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Directed differentiation of cells in vitro is a powerful approach for dissection of developmental 

pathways, disease modeling and regenerative medicine, but analysis of such systems is complicated 

by heterogeneous and asynchronous cellular responses to differentiation-inducing stimuli. To enable 

deep characterization of heterogeneous cell populations, we developed an efficient digital gene 

expression profiling protocol that enables surveying of mRNA in thousands of single cells at a time. 

We then applied this protocol to profile 12,832 cells collected at multiple time points during directed 

adipogenic differentiation of human adipose-derived stem/stromal cells in vitro. The resulting data 

reveal the major axes of cell-to-cell variation within and between time points, and an inverse 

relationship between inflammatory gene expression and lipid accumulation across cells from a single 

donor. 
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Single-cell transcriptome profiling enabled by next-generation sequencing has recently emerged as a 

promising tool for characterization of heterogeneous cell populations 1, but routine adoption will 

require development of protocols that allow unbiased profiling of large numbers of cells at reasonable 

cost. To enable efficient characterization of thousands of single cells at a time, we developed a 3’ digital 

gene expression (3’ DGE) RNA-Seq protocol that we refer to as SCRB-Seq (single cell RNA barcoding and 

sequencing; Supplementary Methods, Figure S1 and Table S1). Building on recent advances 2–6, SCRB-Seq 

relies on a template-switching reverse transcriptase to convert poly(A)+ mRNA from isolated single cells 

to cDNA decorated with universal adapters, well-specific barcodes and unique molecular identifiers 

(UMIs) 7. Decorated cDNA from multiple cells are then pooled, amplified and prepared for multiplexed 

sequencing using a modified transposon-based fragmentation approach that enriches for 3’ ends and 

preserves strand information. SCRB-Seq is specifically optimized for surveying mRNA from large cell 

numbers using minimal reagents, reagent transfers and sequencing reads per cell, with the aim of 

characterizing the major patterns of gene expression variation across heterogeneous populations in a 

cost-efficient manner. It requires approximately two times fewer enzymatic reactions, purifications and 

liquid transfer steps than a previous high-throughput protocol 8 and is complementary to protocols that 

are optimized for deep, full-length transcriptome coverage 9. 

 

To demonstrate SCRB-Seq, we applied it to characterize a primary human adipose-derived stem/stromal 

cell (hASC) 10 differentiation system (see Supplementary Materials and Figure S2). In vitro adipogenesis is 

both a general model of lineage commitment and an important source of cells for research on metabolic 

disorders 11,12. A variety of cell populations can be induced to differentiate by cocktails of adipogenic 

hormones and growth factors, but their yields of lipid-filled, adipocyte-like cells are highly variable. It 

remains unclear to what extent this variability reflects heterogeneity in the starting populations, 

stochastic responses to imperfect differentiation stimuli or other factors. The great majority of 

adipogenesis research over the last three decades has therefore relied on the immortalized murine 3T3-

L1 cell line, which supports near complete conversion to adipocyte-like cells 13. Numerous molecular 

differences have, however, been found between this cell line and hASCs 14. Single-cell profiling should 

help clarify the origin and relevance of these differences and also improve the utility of more 

heterogeneous differentiation systems. 

 

We collected cells from hASC cultures just prior to induction of differentiation (day 0), as well as at 

seven time points after induction (days 1, 2, 3, 5, 7, 9 and 14). At the last time point, approximately two 
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thirds of the cells contained clearly visible lipid droplets while the remainder retained a more fibroblast-

like morphology (Figure 1A). We used a nucleic acid stain to identify and sort intact single cells into 384-

well plates with a fluorescence-activated cell sorter (FACS; Supplementary Figure 2A). We also used a 

neutral lipid stain to separately sort single cells based on their lipid contents (Supplementary Figure 

S2B). After further protocol optimizations (see Supplementary Methods), we collected and sorted 

additional cells from independent cultures at days 0, 3 and 7 (Supplementary Figures S2 and S3). In total, 

we prepared multiplexed SCBR-Seq libraries from 44 microplates (Supplementary Tables S1 and S2), 

sequenced these to a mean depth of ~165,000 reads per well and then aligned the reads to RefSeq 

transcripts. After stringent filtering on sequence and alignment quality, and then estimating the 

expression levels in each cell from UMI counts (Supplementary Figure S4), we obtained survey-depth 

DGE profiles from a total of 12,832 cells (76% of the total wells). As judged by the UMI counts, each DGE 

profile captured between 1,000 and ~10,000 unique mRNAs (mean = 2,602 and 3,336 for the initial and 

optimized protocols, respectively), which constitutes a ~4-fold increase in mean library complexity 

relative to a previous high-throughput protocol 8. 

 

Initial analysis of the resulting data showed that the mean gene expression levels across the single cell 

profiles were significantly correlated with their corresponding levels from bulk unsorted cells collected 

at the same time point (r = 0.8, p < 10-100; Figure 1B). Of 15,099 distinct RefSeq genes that were detected 

at day 0 in bulk unsorted cells, 14,612 (97%) were also detected in at least one single cell from the same 

day. As expected from the relatively low sequencing coverage, only the most actively transcribed genes 

were captured from every cell (Supplementary Figure S5), but we could nevertheless detect significant 

positive and negative correlations between the expression levels of individual genes across cells 

collected on the same day (Figure 1C; Supplementary Figure S6). For example, LPL and G0S2, two 

traditional markers that are both up-regulated after induction of adipogenesis, had positively correlated 

expression levels after differentiation (r = 0.23, p < 10-12 on day 7; FDR ≤ 5%). We could validate a 

positive correlation between these genes both by qRT-PCR analysis of independently sorted single cells 

(Figure 1D) and in situ by multiplexed single molecule FISH 15 (smFISH; Figure 1E; Supplementary Figure 

S7 and Table S3). Further comparison suggested that the mRNA detection efficiency of SCRB-Seq at the 

chosen sequencing depth was approximately 1-2% relative to smFISH (LPL: mean un-normalized UMI 

count = 1.0/cell, range = 0 to 18 from SCRB-Seq, mean mRNA count = 44.7/cell, range = 0 to 350 from 

smFISH; G0S2: mean un-normalized UMI count = 0.26/cell, range = 0 to 10 from SCRB-Seq, mean mRNA 

count = 31.2, range = 0 to 313 from smFISH). We conclude that SCRB-Seq can capture gene expression 
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variation at single-cell resolution, although the relatively unbiased transcriptome coverage comes at the 

cost of lower sensitivity than state-of-the-art single molecule detection methods. 

 

To understand the observed cell-to-cell variation in gene expression in more detail, we performed a 

principal component analysis (PCA) of the initial time course (days 0 to 14; 6,197 cells; Figure 2A-H). 

Plotting the position of each cell in the space defined by the first three principal components revealed 

two salient features. First, there was little overlap between cells from day 0 and cells from later time 

points, which suggests that addition of the adipogenic differentiation cocktail induced a rapid response 

in virtually all of the cultured cells. Second, gene expression levels continued to evolve from day 1 to day 

14, but there was substantial overlap between the cells collected at close time points. This is consistent 

with a population-wide, but asynchronous, response to induction of differentiation.  

 

To explore the biological basis for the observed gene expression variation, we next examined the 

relationships between each of the top principal components (PCs), gene expression and time (Figure 3). 

The PCs can be interpreted as metagenes 16 that capture coordinated expression of multiple genes in the 

original data set. For each PC, we therefore ranked the genes according to their corresponding PC 

weights and then looked for evidence of coordinately regulated pathways using gene set enrichment 

analysis 17 (GSEA; Supplementary Data S1). This analysis suggested qualitative biological interpretations 

for at least the top four PCs.  

 

The first PC metagene (PC1) was positively associated with genes involved in general cellular 

metabolism, including the majority of genes involved in ribosome assembly, mitochondrial biogenesis 

and oxidative phosphorylation, while it was negatively associated with inflammatory pathways, cytokine 

production and caspase expression. We interpret variation along PC1 to reflect differences between 

metabolically active “healthy” and inactive “unhealthy” cells. Interestingly, while there was a shift 

towards the latter state towards day 14, there was substantial overlap between the PC1 distributions 

from all time points, which indicates that this axis of variation was a major contributor to culture 

heterogeneity prior to induction of differentiation. Note that we did not observe significant cell 

detachment or death during the two weeks of differentiation, which suggests that the inflammation 

signature represents a chronic cell state rather than ongoing apoptosis. In contrast, PC2 was high only in 

cells collected from day 0, effectively separating these from the differentiating cells. It showed a strong 

positive association with expression of genes required for progression through the mitotic cell cycle and 
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to a lesser extent with genes associated with non-adipogenic differentiation. We therefore interpret a 

decrease in PC2 to reflect exit from the cell cycle and lineage commitment. Expression of PC3 was high 

during the first two days post-induction and then steadily decreased towards day 14. This decrease was 

associated with up-regulation of lipid homeostasis pathways and markers of adipocyte maturation. PC4 

showed a transient drop at day 1, which was associated with increased expression of genes known to be 

rapidly induced by adipogenic cocktails, including early adipogenic regulators CEBPB and CEBPD 11. We 

therefore interpret PC4 to reflect an early response to induction of differentiation.  

 

To explore the relationship between variations in gene expression and in lipid droplet accumulation, we 

next analyzed an additional 933 cells with high and 666 cells with low lipid contents collected at day 14 

(Supplementary Figure S2). When we projected the DGE profiles of these cells into the space defined by 

the initial time course PCs, we found that high and low lipid cells were largely separated by their 

distribution along PC1 (Figure 2I, Figure 3). That is, cells with higher lipid content showed higher 

expression of genes related to basic cellular metabolism, while cells with lower lipid content showed 

higher expression of inflammatory genes. Interestingly, there was substantial overlap along PC3, and 

while some classic adipocyte markers like FABP4 (aP2) were enriched in the high lipid fraction 

(Supplementary Data S2), key regulatory factors such as PPARG were not, which implies that pathways 

related to lipid homeostasis and adipocyte maturation had been activated in both fractions. Separate 

PCAs of the second collected time course (2,968 cells from days 0, 3 and 7, and 2,068 additional cells 

with high or low lipids from day 7) yielded qualitatively similar patterns (Supplementary Figure S8 and 

Data S3 and S4), which suggests that our observations are robust to technical variation across cell 

cultures.  

 

Thus, while morphological analysis suggested that only a fraction of hASCs respond to the differentiation 

cocktail, our single-cell data show that virtually all of the cells exited the mitotic cell cycle and proceeded 

to up-regulate an adipogenic gene expression program. The observed variability in lipid droplet 

accumulation and conversion to mature adipocyte-like morphologies is instead most strongly linked to 

an inverse correlation in expression of basic cellular metabolism and inflammatory expression programs, 

which was also present prior to the induction of differentiation. Notably, cells with low lipid contents 

showed elevated expression of several pro-inflammatory regulatory factors, including as IRF1, IRF3 and 

IRF4 (Supplementary Data S2 and S4). These factors have previously been shown to negatively influence 

total lipid accumulation in murine bulk cultures and in vivo models 18,19, which support a causal link 
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between cell-to-cell variation in expression of these factors and lipid accumulation. Specific activation in 

the fraction of low lipid cells may explain the paradoxical increases in expression of these factors that 

have previously been observed in bulk cultures 18. Interestingly, increased inflammatory expression and 

decreased metabolism has also been observed in bulk profiling of lipoaspirates from human subjects 

with adipose tissue dysfunction 20–22. This increase in part reflects immune infiltration, but also 

activation of inflammatory cascades in adipocytes 23. This parallel variation in gene expression between 

single cells from the same donor and between tissues from multiple donors merits further study. 

 

In conclusion, we have applied SCRB-Seq to survey gene expression in differentiating hASC cultures at 

single cell resolution. The resulting data reveal the major axes of variation on gene expression, suggest a 

biological basis for the morphological heterogeneity observed in these cultures, and provide a rich 

resource for dissection of the regulatory networks involved in adipocyte formation and function. Future 

advances in sequencing and cell isolation technologies will enable identification of rare expression 

programs through deeper and more sensitive profiling of every cell, and direct comparison of in vitro 

and in vivo heterogeneity through direct profiling of single cells from tissue samples.  
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Figure Legends 

 

Figure 1 – Characterization of cell culture heterogeneity using SCRB-Seq. A) Heterogeneity in hASC 

cultures upon induction of directed adipogenesis. Lipid accumulation is visualized by Oil Red O staining. 

B) Gene expression estimates from bulk cells compared to their corresponding means across the single 

cell profiles. UPM = UMI counts for one gene per million UMI counts for all genes. C) Distribution of 

observed pairwise correlations (Pearson’s r) between all pairs of genes that were detected in at least 

10% of day 7 cells (n = 4,038 genes) compared to an estimated null distribution obtained by permuting 

the expression values of each gene across the same cells. D) Single cell qRT-PCR and E) smFISH validation 

of the observed positive correlation between LPL and G0S2 from separate cells also collected at day 7. 

 

Figure 2 – Gene expression dynamics at single cell resolution. A-H) Each scatter plot shows the first 

three PCs of the initial hASC time course. Red dots show cells collected at the indicated time point, while 

blue dots show cells collected at all previous time points. I) Separately sorted cells with high and low 

lipid content from day 14 projected into the same PC space.  

 

Figure 3 - Gene set enrichment analysis. Distributions of weights (right) and selected genes and genes 

sets associated with positive and negative weights (left) for the top four PCs in the initial hASC time 

course and lipid-based sort. See also Supplementary Data S1-S4 for complete GSEA results. Percentages 

indicate the ratio of the total variance in the data set captured by each PC. Red lines indicate medians, 

boxes the 1st and 3rd quartiles and whiskers the ranges.  
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Supplementary Data 

All sequences and derived gene expression data have been deposited in the NCBI GEO database under 

accession number GSE53638. 

  

8 
 

 on June 2, 2014http://biorxiv.org/Downloaded from 

http://biorxiv.org/


Soumillon et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq 

References 

1. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will 
revolutionize whole-organism science. Nat. Rev. Genet. 1–13 (2013). doi:10.1038/nrg3542 

2. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex 
RNA-seq. Genome Res. 21, 1160–7 (2011). 

3. Islam, S. et al. Highly multiplexed and strand-specific single-cell RNA 5’ end sequencing. Nat. 
Protoc. 7, 813–28 (2012). 

4. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed 
linear amplification. Cell Rep. 2, 666–73 (2012). 

5. Kapteyn, J., He, R., McDowell, E. T. & Gang, D. R. Incorporation of non-natural nucleotides into 
template-switching oligonucleotides reduces background and improves cDNA synthesis from very 
small RNA samples. BMC Genomics 11, 413 (2010). 

6. Gertz, J. et al. Transposase mediated construction of RNA-seq libraries. Genome Res. 22, 134–41 
(2012). 

7. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. 
Methods 9, 72–4 (2012). 

8. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues 
into cell types. Science 343, 776–9 (2014). 

9. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. 
Methods 10, 1096–8 (2013). 

10. Aust, L. et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. 
Cytotherapy 6, 7–14 (2004). 

11. Rosen, E. D. & MacDougald, O. a. Adipocyte differentiation from the inside out. Nat. Rev. Mol. 
Cell Biol. 7, 885–96 (2006). 

12. Cristancho, A. G. & Lazar, M. a. Forming functional fat: a growing understanding of adipocyte 
differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–34 (2011). 

13. Green, H. & Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell 
3, 127–33 (1974). 

14. Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 
143, 156–69 (2010). 

15. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual 
mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–9 (2008). 

9 
 

 on June 2, 2014http://biorxiv.org/Downloaded from 

http://biorxiv.org/


Soumillon et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq 

16. Brunet, J.-P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery 
using matrix factorization. Proc. Natl. Acad. Sci. U. S. A. 101, 4164–9 (2004). 

17. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–50 
(2005). 

18. Eguchi, J. et al. Interferon regulatory factors are transcriptional regulators of adipogenesis. Cell 
Metab. 7, 86–94 (2008). 

19. Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–59 
(2011). 

20. Pietiläinen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: 
pathways behind acquired obesity. PLoS Med. 5, e51 (2008). 

21. Lee, Y. H. et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese 
vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 48, 
1776–83 (2005). 

22. Mutch, D. & Tordjman, J. Needle and surgical biopsy techniques differentially affect adipose 
tissue gene expression profiles. Am. J. Clin. Nutr. 89, 51–57 (2009). 

23. Toubal, A., Treuter, E., Clément, K. & Venteclef, N. Genomic and epigenomic regulation of 
adipose tissue inflammation in obesity. Trends Endocrinol. Metab. 24, 625–34 (2013).  

 

 
 

10 
 

 on June 2, 2014http://biorxiv.org/Downloaded from 

http://biorxiv.org/


Figure 1

D E

B C

0 100 200 300
0

100

200

300 r = 0.8, p < 10-94
 r = 0.6, p < 10-22

 

G0S2 (mRNA/cell)

Pairwise correlation (r)

G
en

e 
pa

irs

G0S2 (55-C
T
)

LP
L 

(m
R

N
A

/c
el

l)

LP
L 

(5
5-

C
T)

0
0

10

10

20

20

30

30

B
ul

k 
un

so
rte

d 
ce

lls
 (l

og
10

U
P

M
)

20 4 6
Mean over single cells (log10UPM)

6

4

2

0

r = 0.8, p < 10-100
 

day 0 day 1 day 2 day 3

day 5 day 7 day 9 day 14

A

50µm

106

105

104

103

102

101

100

-0.6 -0.4 -0.2  0.0 0.2 0.4

5% FDR

LPL vs.
G0S2

0.6 0.8 1.0

Observed
Null

 on June 2, 2014http://biorxiv.org/Downloaded from 

http://biorxiv.org/


Figure 2

Day 0 Day 1 Day 2

Day 3 Day 5

Day 9 Day 14

Day 7

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

PC3

PC2 PC1

+3

-3
-3

+3 +3

-3

Day 14’

PC3

PC2 PC1

+3

-3
-3

+3

High lipids

Low lipids

+3

-3

A B C

D E F

G H I

 on June 2, 2014http://biorxiv.org/Downloaded from 

http://biorxiv.org/


Figure 3

10 2 3 5 7 9 14 HighLow

Day Lipids (day 14)

Metagene expression Positive weights

Selected genes and gene sets

Negative weights Interpretation

Active metabolism
and cell health

RPS18, FN1, RPL26, COL1A1/2,
GAPDH, TGFBI, ACTG1, ACTB
Translation (GO:0006412)
Anti-apoptosis (GO:0006916)
Oxphos (KEGG:hsa00190)
TCA cycle (KEGG:hsa00020)

Cytokine metabolism 
(GO:0042107)
Caspase pathway (Biocarta)

Mitotic cell cycle (GO:0000278)
Muscle development 
(GO:0007517)
Proteasome (KEGG:hsa03050)
Rho cell motility (Biocarta)

Lipid metabolism (GO:0006629)
Oxygen and ROS metabolism
(GO:0006800)
PPAR signaling (KEGG:hsa:03320)

Lipid metabolism (GO:0006629)
TCA cycle (KEGG:hsa00020)
Insulin signaling
(KEGG:hsa04910)
Adipocytokine signaling
(KEGG:04920)

n/a

Translation (React:1014)
Immunoregulatory
interactions (React:11152)

Negative regulation of binding
(GO:0051100)
Ascorbate and aldarate 
metabolism (KEGG:hsa00053)

POSTN, LGALS1, ANXA2, 
CCNB1, CENPF, EIF5A, TPI1

POLH, XIAP, TFDP2, GATAD1, 
HIF3A, IL12RB1, IL6R, IRF1

FABP4 (aP2), MALAT1, SCD,
NEAT1, LPL, G0S2, NKX3-1

FABP4 (aP2), SCD, PLIN1/4,
CD36, ADIPOQ, CIDEC, PPARG

MT1A-X, PPIAL4A-G, B2M, 
DKK1, NNMT, FOXP1, TXNIP

SENP7, FOXP1, SOX11, 
CD47, SHOX, FGF23 

MT1A-X, MT3, ID3, KLF8,
DCN, CEBPB/D 

Exit from the cell 
cycle and lineage 
committment 

Adipocyte 
maturation

Early response 
to differentiation 
cocktail

PC1
(52%)

PC2
(11%)

PC3
(7%)

PC4
(6%)

 on June 2, 2014http://biorxiv.org/Downloaded from 

http://biorxiv.org/

	Soumillon - Main Text
	Figure 1
	Figure 2
	Figure 3

