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SUMMARY

Transcribed gene fusions are key biomarkers inmany
hematologic and solid tumors, often representing the
primary oncogenic driver mutation. Here, we report
an experimental and computational pipeline for de-
tecting fusion transcripts using single-molecule RNA
FISH and unbiased correlation analysis (FuseFISH).
We constructed a genome-wide database of optimal
oligonucleotide sequences, enabling quick design of
FuseFISH probes against known and novel fusions.
We implemented FuseFISH in cell lines, tissue
sections, and purified RNA, reliably detecting one
BCR-ABL1 positive in 10,000 negative cells. In 34
hematologic samples, we detected BCR-ABL1 tran-
scripts with high specificity and sensitivity. Finally,
we measured BCR-ABL1 expression heterogeneity
and dynamics in single CML cells exposed to the
kinase inhibitor Nilotinib. Our resource and methods
are ideal for streamlined validation of fusions newly
identified by next-generation sequencing, and they
pave theway to studying the impact of fusion expres-
sion variability on clinical outcome.

INTRODUCTION

Cytogenetic abnormalities such as translocations, inversions,

and insertions are characteristic attributes of cancer cells, and

they often result in the formation of chimeric genes consisting

of segments of two different genes fused together (Fröhling and
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Döhner, 2008). In most cases, the chimeric gene is transcribed

into a fusion transcript encoding parts of a tyrosine kinase or a

transcription factor, which become deregulated as a conse-

quence of the fusion (Fröhling and Döhner, 2008). Often a gene

fusion represents the primary oncogenic driver mutation in a tu-

mor and hence an ideal pharmacologic target, as demonstrated

by the archetypical case of BCR-ABL1 and its selective inhibitor,

Imatinib, in chronic myeloid leukemia (CML) (Melo and Barnes,

2007; Ren, 2005; Schiffer, 2007). Therefore, detecting and moni-

toring in time the expression levels of specific gene fusions in

cancer has become common practice in molecular pathology.

While recurrent fusions have long been known in hematologic

tumors and sarcomas (Mitelman et al., 2007; Rowley, 2009),

recent progress in next-generation sequencing technologies

has fueled the discovery of new fusions in solid tumors (Maher

et al., 2009; Rabbitts, 2009), as exemplified by EML4-ALK in a

subset of non-small cell lung cancers (NSCLCs; Soda et al.,

2007). Thus, demand for simple andquantitative assays to detect

a broad spectrum of fusions will likely emerge in the future.

Detection of fusions is typically achieved at the DNA level by

karyotype analysis and DNA fluorescence in situ hybridization

(FISH), or at the RNA level by RT-PCR. In spite of the effective-

ness and broad use of these techniques, several limitations

call for new complementary methods. For instance, even though

considerable progress in image processing automation has

been done (Alpár et al., 2008; Lerner et al., 2001; Shirley et al.,

2011), data analysis of DNA FISH remains difficult to standardize

and automate because colocalization of dual-fusion probes or

splitting of break-apart probes is usually assessed in a subjective

manner. Importantly, DNA FISH is unable to provide information

about expression levels of the fusions, which is clinically relevant

information (Baccarani et al., 2009). On the other hand, RT-PCR
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Figure 1. FuseFISH Method

(A) A gene fusion originating from a translocation

(magenta-green chromosome) produces fusion

transcripts (yellow dots) that are detected as

colocalized fluorescent spots by probe sets con-

sisting of differently labeled oligos targeting each

fusion partner (zoom-in).

(B) Cumulative frequency of smFISH oligos per

coding transcript in the human transcriptome. A

total of 79% of transcripts contain R15 oligos

(gray area). n, transcript number.

(C) Relative frequency of smFISH oligos for either

the 50 (gray curve) or 30 (orange curve) moiety of the

shortest variant of 348 unique fusions cataloged in

Table S1. Gray area: fraction of transcripts

withR15 oligos coverage (57% for 50 and 92% for

30 partners). n, number of fusions analyzed.

(D) BCR-ABL1 transcripts (yellow spots) in positive

(K562) versus negative (TS) cells.

(E) EML4-ALK transcripts (yellow spots) in mouse

xenografts of lung adenocarcinoma H3122 cells.

Yellow arrowheads in the inset indicate examples

of fusions.

(F) BCR-ABL1 fusion transcripts (yellow spots) in

spotted purified RNA extracted from K562 cells.

See also Figure S1.
is a powerful method to quantify expression, but the develop-

ment of standardized and reproducible assays for absolute

quantification of fusion transcripts can be challenging, especially

in formalin-fixed, paraffin-embedded (FFPE) tissue sections. In

addition, fusion transcripts often involve different exons in inde-

pendent clinical samples, thus requiring multiple PCR reactions

and controls for their detection. Another limitation relates to the

use of RT-PCR in single cells to monitor intratumor expression

heterogeneity, which seems clinically informative (La Thangue

and Kerr, 2011; Marusyk et al., 2012). Though technically

feasible, routine clinical application of single-cell RT-PCR in

the clinical context remains challenging, especially in solid
Cell Reports 6, 18–2
tumors, and is associated with high costs

for a relatively moderate throughput.

Here, we sought to develop a robust

and unbiased experimental and compu-

tational framework for detecting specific

fusion transcripts in situ or using purified

RNA. We demonstrate the feasibility and

simplicity of our approach for a variety

of fusion transcripts in cell lines, tumor

sections, and hematologic specimens.

Our resource and methods can be

readily applied to biological studies of

gene fusions and integrated into clinical

cytogenetics.

RESULTS

Method and Probe Resource
In order to detect fusion transcripts at

single-molecule resolution, we capital-
ized on a method for single-molecule RNA FISH (smFISH) previ-

ously developed by our group (Raj et al., 2008) based on earlier

work (Femino et al., 1998) and on a recent method to detect

different mRNA isoforms (Waks et al., 2011). We devised an

approach by which each fusion partner is labeled with a set of

oligonucleotides coupled to a specific fluorophore, so that the

resulting fusion can be detected as two spectrally distinguish-

able, colocalized diffraction-limited spots (Figure 1A; see Exper-

imental Procedures). We named this approach FuseFISH.

To facilitate smFISH probe design, we compiled a genome-

wide list of oligonucleotides with optimal thermodynamic

properties targeting 82,225 annotated human protein-coding
3, January 16, 2014 ª2014 The Authors 19



Figure 2. FuseFISH Validation

(A) PICCS correlation analysis of BCR-ABL1 in K562 cells serially diluted with

TS cells. Fitting of the linear portion of each curve yields the correlation fraction

a as the offset of the linear fit. The optimal distance rt threshold balances false

positives and negatives such that correlating signals closer than rt results in the

correlation fraction a.

(B) Measured versus predicted scaling of a in the same cell dilutions as in (A).

(C) Distribution of a in hematologic samples. Optimal cut-off is shown as

dashed line.

(D) ROC curve of FuseFISH versus DNA FISH and/or RT-PCR for detection of

BCR-ABL1 in hematologic samples. Optimality is achieved for aR5% (red).

Dashed line, line of no discrimination.

See also Figure S2.
transcripts (see Experimental Procedures). For 79% of tran-

scripts, at least 15 oligos can be synthesized, which is sufficient

to produce a reliable smFISH signal (Figure 1B). This oligo library

is a powerful resource for versatile and rapid design of smFISH

probes and is readily accessible at our website (http://www.

fusefish.eu).

To estimate coverage for transcript fusions, we separately

calculated the number of oligos available for the 50 and 30 fusion
partner of 348 fused transcripts for which we managed to

retrieve the exact breakpoint coordinates by comprehensive

literature and database screening (Table S1; see Supplemental

Experimental Procedures). To calculate the minimum number

of oligos available, we selected the shortest variant when multi-

ple fusion variants were annotated. On average, 30 and 76 oligos

are available for 50 and 30 fusion partners, respectively, the differ-

ence reflecting the fact that 30 UTRs tend to be longer than 50

UTRs in most transcripts (Figure 1C). We note that this coverage

represents a very stringent estimate, in the sense that it is based

on the shortest fusion variants described in the literature, even

though their frequency is low in most of cases.
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FuseFISH Implementation
As a proof of principle, we constructed probes targeting themost

frequent variants of BCR-ABL1, NPM1-ALK, and EML4-ALK

fusions in CML, anaplastic large cell lymphoma, and NSCLC,

respectively (Figure S1A; Table S2). In positive cell lines, we

observed fusion-specific colocalized transcripts mixed with

wild-type transcripts (Figure 1D). Next, we applied FuseFISH to

FFPE tissue sections of mouse xenografts of human EML4-ALK

positive NSCLC cells. Similar to cultured cells, FuseFISH was

able todetect fusion transcriptsamidstwild-typeones (Figure1E).

While detection of fusion transcripts in cells and tissues can

be powerful in cytogenetic diagnostics of well-characterized

fusions,detection inpurifiedRNAwouldbedesirable for rapidvali-

dation of newly discovered fusions. To maximize the versatility of

FuseFISH, we devised a protocol for smFISH using purified RNA

spotted onmicroscopy slides (Figures S1B and S1C; see Supple-

mental Experimental Procedures). We spotted RNA extracted

from the CML cell line K562 and used probes targeting BCR and

ABL1 transcripts. As expected, BCR-ABL1 fusion transcripts

appeared as bright, colocalized fluorescent spots (Figure 1F).

Automated Signal Detection
Though spatial colocalization of fusion transcripts is immediately

apparent in the above experiments, unbiased quantification is

unfeasible by eye. To achieve fully automated and unbiased

fusion detection, we implemented a computational pipeline

that determines the average fraction a of signals from a given

transcript species A (e.g., BCR) with a correlated (i.e., nonran-

domly colocalized) signal from a different transcript species B

(e.g., ABL1), based on particle image cross-correlation spec-

troscopy (PICCS; Semrau et al., 2011; Figures 2A and S2A;

see Experimental Procedures). Briefly, we constructed a cumu-

lative correlation function CcumðrÞ by counting the average num-

ber of B signals neighboring an A signal depending on the

distance r of separation. Linear fitting of CcumðrÞ versus r2 at

distances exceeding the typical correlation length gave the

correlation fraction a as the offset of the fitted line. We initially

processed 3D image stacks to reduce the incidence of random

colocalization. However, at observed transcript densities, we

obtained similar correlation fractions and accuracies using

maximum projections and 2D analysis (Figure S2B). Since the

computational effort is substantially smaller for 2D analysis, we

applied this approach in all subsequent analyses. We compared

a in cells expressing a particular fusion with negative cells. As ex-

pected, awas systematically higher in positive cells (Figure S2C).

We also compared formalin fixation to fixation in methanol-

acetic acid—the standard fixative in cytogenetics—and ob-

tained very similar a values (Figure S2C). To prove that FuseFISH

is quantitative, we calculated aBCR�ABL1 for serial dilutions of

K562 with BCR-ABL1-negative TS cells. We observed strong

linear scaling of aBCR�ABL1 with our prediction based on pure

population measurements (Figure 2B). We then determined the

sensitivity of FuseFISH by estimating the accuracy of the

measured a by bootstrapping. A mix of K562 and TS cells at

1:80 ratio yielded a significantly higher aBCR�ABL1 value

compared to TS cells alone (3.2% versus 0.8%, p < 10�3).

Finally, we estimated the minimal amount of signals that need

to be measured to determine a with a given accuracy. We
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Figure 3. Applications of FuseFISH

(A) Cell-to-cell BCR-ABL1 expression variability in K562 cells.

(B) BCR-ABL1 and MKI67 expression in K562 cells exposed to Nilotinib

(orange) or vehicle (black) for 48 hr. Dashed box: heterogeneous BCR-ABL1

expression in Nilotinib-treated MKI67Low cells. Thick box: BCR-ABL1Low-

MKI67High Nilotinib-treated subpopulation.

(C) Intertumor variability of local correlation fraction b.

(D)BCR-ABL1 expressing cells representative of the left (Low b) and right (High

b) portion of the histogram in (C).

See also Figure S3.
modeled PICCS accuracy as a function of several parameters

(Figure S2D). For example, if a= 5% is to be measured with an

error margin of 1% at a density of ten transcripts per cell

(100 mm2 cell area), the model predicts that approximately

1,000 signals (100 cells) have to be imaged.

Detection of rare fusion events holds important biological and

clinical implications. For example, monitoring of decreasing

BCR-ABL1 levels in CML patients is crucial to assess thera-

peutic response (Kantarjian et al., 2008; Radich, 2009). However,

as the frequency of a fusion decreases in a population of cells,

the imaging time required to obtain statistically significant results

becomes quickly unpractical. We reasoned that performing

FuseFISH in concentrated purified RNA would allow us to detect

rare fusions, maximizing the sensitivity of our method. Thus, we

devised a protocol to quickly and easily immobilize purified RNA

on microscope slides (see Supplemental Experimental Proce-

dures) and imaged thousands of transcripts from a mixture of

K562 and TS cells. By this approach, we reliably detected

BCR-ABL1 fusions derived from as little as one K562 cell per

10,000 TS cells (Figure S2E).

Validation of FuseFISH
To validate our approach, we compared FuseFISH with gold

standard methods used for BCR-ABL1 diagnostics (see Experi-

mental Procedures). We retrospectively analyzed 34 hemato-
logic samples fixed in methanol-acetic acid, including 17 cases

of CML and 5 cases of acute lymphoblastic leukemia expressing

BCR-ABL1 (age: median, 56 years; range, 52–63 years; see

Table S3). We derived a receiver operating characteristic (ROC)

curve by comparing FuseFISH a to the diagnosis (BCR-ABL1

positivity or negativity) previously formulated based on DNA

FISH and/or RT-PCR. A score aR5% correctly identified positive

cases with 100%specificity and 89% sensitivity, and a positively

correlated (r2 = 0:62, p = 0.05) with RT-PCR results (Figures 2C,

2D, and S2F). We also performed systematic cross-validation

and determined that our algorithm achieves maximal sensitivity

and specificity when trained on R25 cases (Figure S2G).

BCR-ABL1 Cell-to-Cell Variability
Until now, robust quantification of fusion transcript in single cells

has been challenging. Such measurement would advance our

understanding of tumor heterogeneity and its implications on

disease prognosis and therapeutic response. As a proof of prin-

ciple, we applied FuseFISH to study fusion transcript expression

variability and dynamics in single cancer cells upon fusion-

targeted therapy. We first assessed the expression of BCR-

ABL1 in K562 cells and found that it was noisy (coefficient of

variation [CV] = 0.48; Figure 3A). Next, we simultaneously

measured BCR-ABL1 and the proliferation marker MKI67 in

hundreds of individual K562 cells undergoing treatment with

the specific tyrosine kinase inhibitor, Nilotinib. As expected,

upon treatment the fraction of proliferating cells decreased sub-

stantially (Figures 3B and S3A). Based on MKI67 expression

upon Nilotinib treatment, we classified cells into MKI67High and

MKI67Low. After 24 hr exposure to Nilotinib, the MKI67High sub-

population exhibited increased expression variability compared

to vehicle control (CV = 0.6, p = 53 10�3, F test). Interestingly, we

also observed a subpopulation of Nilotinib-treated MKI67High

cells with lower BCR-ABL1 expression compared to untreated

cells (Figures 3B and S3A–S3C).

Finally, we measured BCR-ABL1 variability in our set of hema-

tologic samples. Since cell segmentation can be challenging in

these specimens, we computed a local correlation fraction, b, re-

porting on theBCR-ABL1/BCR ratio in the neighborhoodofBCR-

ABL1 signals (see Experimental Procedures). In serial dilutions of

K562 with TS cells, b was constant over a wide range of dilution

rates ðaR5%Þ and close to the a value calculated for a pure pop-

ulation of K562 cells (Figure S3D). Thus, b is a faithful proxy of the

level of BCR-ABL1 expression in positive cells. In BCR-ABL1-

positive specimens the b score varied substantially from cases

expressing low BCR-ABL1 per cell (Low b) to cases expressing

high amounts (High b) (Figures 3C and 3D). Interestingly, in seven

BCR-ABL1-positive cases with known progression-free survival

(PFS), we found that PFS tended to be shorter in patients with

high a and b; however, without reaching significance (p > 0.05)

due to low statistical power (Table S3). In the future, ad hoc pro-

spective trials should be designed to clarify the impact of fusion

expression and variability on clinical outcome.

DISCUSSION

We have devised a readily applicable and versatile experimental

and computational framework that can serve multiple purposes
Cell Reports 6, 18–23, January 16, 2014 ª2014 The Authors 21



and complements existing technologies for gene fusion detec-

tion. Our genome-scale oligo database is a powerful resource

thanks to which FuseFISH probes (and, more generally, smFISH

probes) can be easily and rapidly designed, making the method

particularly suitable to confirm newly discovered fusions.

Since it can be applied to methanol-acetic acid fixed cells—

the standard fixation procedure in cytogenetics—FuseFISH

can be integrated in diagnostics practice, accelerating assay

time (hybridization, imaging, and automated signal quantification

can be performed on the same day) and eliminating subjective

biases in scoring colocalized or split-apart DNA FISH signals.

We expect that the fully automated and unbiased correlation

analysis achievable with our computational pipeline will facilitate

fusion transcript detection and help improve interlaboratory

reproducibility.

The ability to visualize individual transcripts using purified RNA

is particularly beneficial for quick and reliable validation of

fusions discovered by next-generation sequencing techniques

such as RNA sequencing. Purified RNA FuseFISH might also

be applied when the fraction of fusion-expressing cells is low,

such as for monitoring BCR-ABL1 levels in CML patients during

targeted therapy. While FuseFISH sensitivity is currently ten

times lower than for RT-PCR (Kantarjian et al., 2008; Radich,

2009)—the current standard to monitor minimal residual disease

in CML patients—implementation of the method on a high-

throughput imaging system could further improve sensitivity.

Investigation of transcriptional heterogeneity in early devel-

oping cancers is in its infancy, and experimental and computa-

tional frameworks to measure fusion transcript variability are

missing. FuseFISH opens the possibility to investigate the

dynamics of fusion expression in response to therapeutic

agents, relate expression variability to clinical outcomes, and

simultaneously assess specific gene expression signatures

with defined fusions in individual cells. In the long term, it will

be important to design prospective trials to test whether these

features predict patients’ response to fusion-targeted drugs

and whether measuring fusion expression in single cells should

be implemented in clinical practice.
EXPERIMENTAL PROCEDURES

smFISH Probe Database

All bioinformatic analyses were performed using custom scripts written in

MATLAB. We retrieved the sequence of all human protein-coding transcripts

by linear concatenation of the exons of each transcript in the ENSEMBL anno-

tated gene database (release 70, January 2013). We scanned each transcript

except the last 19 nt using 20 nt windows sliding in 1 nt steps, computed the

guanine-cytosine (GC) content, and then assembled all windows with GC con-

tent comprised between 40% and 60%. We designed as many 20 nt oligos as

possible separated by at least 2 nt in each region with optimal GC content,

starting from the 50 end of each transcript. Wemaximized the number of oligos

withGC= 45%orGC= 50%by computing theGCcontent of 20 nt oligos start-

ing from each of five consecutive nucleotide positions and selecting the most

50 position with GC = 45% or GC = 50%, if available. We screened the unique-

ness of designed oligos by performing a local BLAST search against the NCBI

RefSeq_RNA database (http://www.ncbi.nlm.nih.gov/refseq/) using blastn.

smFISH

Probes targeting BCR (48 oligos), ABL1 (48 oligos), NPM1 (16 oligos), ALK (48

oligos), and EML4 (48 oligos) transcripts consisted of amine-labeled oligos
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labeled with Cy5 (GE Healthcare, catalog no. Q15108), Alexa Fluor 594

(Molecular Probes, catalog no. A20004), or 6-TAMRA (Molecular Probes, cat-

alog no. C6123) (Table S2). Hybridizations andwashes were done according to

modified protocols based on previously described procedures (Bienko et al.,

2013; Raj et al., 2008; see Supplemental Experimental Procedures for details).

Microscopy

We performed imaging as described earlier (Bienko et al., 2013) using an

inverted epi-fluorescence microscope (Nikon) equipped with a high-resolution

charge-coupled device camera (Pixis, Princeton Intruments). Magnification of

1003 and 403 oil immersion, high-numerical-aperture Nikon objectives were

used for cells and tissues, and purified RNA, respectively. Per region of

interest, we typically acquired an image stack consisting of 40 (cells and

tissues) or 20 (purified RNA) image planes spaced 0.2 mm apart. Details on

image processing are available in the Supplemental Experimental Procedures.

PICCS

Due to chromatic aberration and unavoidable imperfections of microscopy

setup, the two signals stemming from the two moieties of a fusion transcript

are shifted with respect to each other. A typical solution is defining an arbitrary

distance threshold below which two signals are considered colocalized (i.e.,

correlated). However, especially when expression levels are high (and signals

are, therefore, dense), results depend sensitively on the choice of this

threshold. To circumvent this limitation, we used PICCS (Semrau et al.,

2011) to calculate the global level of correlation, a, between fusion partners

in an unbiased way. We constructed the cumulative distribution function,

Ccum, of distances between signals from differentially labeled species

(A and B) by counting the number of all B signals within a distance r of an A

signal and dividing it by the number of A signals (Figure S2A). The resulting

CcumðrÞ function reports the average number of B neighbors (of an A signal)

closer than r and has the general form CcumðrÞ=aABPcumðrÞ+pcBr
2, where

aAB is the correlation fraction (i.e., the fraction of A signals which have a corre-

lated B signal), cB is the average density of B signals, and Pcum is the cumula-

tive distribution function of distances between truly correlated signals. When

plotted versus r2, the contribution of uncorrelated B signals p cBr
2 can be

estimated by linear fitting of CcumðrÞ at distances exceeding the correlation

length. The fit line intercepts the y axis at the correlation fraction a, and its

slope is proportional to the density of B signals cB (Figure 2A).

ROC Analysis and Cross-Validation

We constructed ROC curves by computing the rate of true positives (sensi-

tivity) and false positives (100% � specificity) based on specimen classifica-

tion by DNA FISH and/or RT-PCR. We obtained separate ROC curves for

various signal-to-noise ratio cut-offs. We performed cross-validation by

repeated random sampling (without replacement) of a subset of specimens

(training set), while the ratio of positive and negative cases was the same as

in the full data set. For each sample, we determined an optimal a threshold

using three different algorithms and calculated the false and true positive rates

for the remaining specimens (test set). Algorithms 1 and 2 force the false pos-

itive rate to be below 0.001 while maximizing the true positive rate. While algo-

rithm 1 maximizes the threshold, algorithm 2 tries to minimize the threshold if

there is no negative impact on the true positive rate. Algorithm 3maximizes the

absolute difference between the false positive and the true positive rate, which

is equivalent to the distance of a point on the ROC curve to the diagonal. Algo-

rithm 1 was chosen because it led to smaller false positive and true positive

rates compared to the other algorithms, and it saturated to false positive

and true positive rates found for the complete data set (Figure S2G).

Local Correlation Fraction

The optimal threshold rt is given byCcumðrÞ=aABPcumðrÞ+pcBr
2 as indicated in

Figure 2A. We considered neighboring BCR and ABL1 signals to be part of the

same fusion transcript if theywere closer than rt . If single cells can be identified,

BCR-ABL1 expression can also be determined for individual cells. Unfortu-

nately, abundant cell clumping in clinical samples precluded such analysis.

However, having identified BCR, ABL1, and BCR-ABL1 separately, we again

used PICCS to determine a local correlation fraction, b, between BCR-ABL1

and all BCR-containing transcripts. To do so, we started from BCR-ABL1

http://www.ncbi.nlm.nih.gov/refseq/


transcripts and counted the number of BCR-ABL1 or all BCR-containing

transcripts in the neighborhood, as shown in Figure S2A. The local correlation

fraction, b, is the ratio of the retrieved densities, b= cBCR�ABL1=

ðcBCR�ABL1 + cBCRÞ, reporting on the ratio of BCR-ABL1 and total BCR expres-

sion in BCR-ABL1-expressing cells. For a perfectly homogeneous population

of cells b=a, whereas in amixed population consisting ofBCR-ABL1-express-

ing and -nonexpressing cells b is the local correlation fraction of positive cells

and, in general, b>a.

We retrieved hematological specimens in methanol-acetic acid 3/1 v/v from

the archive of the Division of Hematology of IRCCSPoliclinico SanMatteo after

approval of the study by the institutional Ethical Committee. Permission to

conduct mice experiments was granted by the Italian Ministry of Health

(approval number 218-2009-B).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.12.002.
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SUPPLEMENTAL FIGURES 

Figure S1. FuseFISH Method, Related to Figure 1 

 

 (A) Location of FuseFISH probes (orange marks) in BCR-ABL1, NPM1-ALK, and EML4-

ALK fusion transcripts. Gray marks: exon-exon boundaries. Gray highlight: 5’ UTR. 

(B) RNA spotting robustness. We spotted 125 ng of total RNA in four different experimental 

replicates. Mean ± s.d. is shown for each replicate. 

(C) RNA spotting linearity. We spotted the indicated amounts of total RNA purified from 

K562 cells. Mean ± s.d. is shown for each amount. Dashed lines: linear fits. All data in (B) 

and (C) were acquired using a 100× magnification oil-immersion microscope objective.  
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Figure S2. FuseFISH validation, Related to Figure 2  

 

(A) Illustration of the PICCS algorithm (see Experimental Procedures for details). 

(B) Comparison of PICCS analysis on 2D maximum image projections versus full 3D images. 
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(C) α  score for various fusion transcripts in different cell lines. Gray: cells fixed in formalin. 

Black: cells fixed in methanol-acetic acid. 

(D) Validation of the PICCS error model based on serial dilutions of K562 with TS cells (see 

Supplemental Experimental Procedures for details). 

(E) Dynamic range for BCR-ABL1 detection in purified RNA. For each cell dilution, we 

spotted 125 ng of total purified RNA. Mean ± s.d. is shown for each dilution. 

(F) Comparison of FuseFISH α  with the (BCR-ABL1)/ABL1 RT-PCR ratio available in 21 

cases. 

(G) Systematic cross validation of the dataset in Figures 2C and 2D using the algorithms 

described in Experimental Procedures. 

 

  



	  

Figure S3. FuseFISH applications, Related to Figure 3 

 

 (A) Distribution of MKI67 mRNA in single cells. The dash line marks an arbitrary cutoff 

between MKI67Low (non-proliferating) and MKI67High (proliferating) cells. 

(B) MKI67 vs. BCR-ABL1 expression in single cells treated with 30 nM Nilotinib for the 

indicated time (hours). DMSO: cells treated with dimethyl sulfoxide for 24 hours. For each 

time point, DMSO-treated cells (black) are superimposed onto Nilotinib-treated cells. 

(C) Distribution of BCR-ABL1 expression in single cells exposed to 30 nM Nilotinib for the 

indicated times (hours). 

(D) Local correlation fraction β  in serial dilutions of K562 with TS cells. Dashed line: linear 

fitting. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Fusion Transcript Coverage 

To estimate the coverage of fusion transcripts by oligos in our database 

(http://www.fusefish.eu), we compiled a comprehensive list of expressed gene fusions based 

on the COSMIC (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) and OMIM 

(http://www.omim.org) databases, and on publications reporting fusions identified by next-

generation sequencing. For each unique pair of fusion transcripts, we retrieved the 

ENSEMBL longest protein-coding transcript (http://www.ensembl.org), and then sought to 

identify the shortest described variant together with the number of the exons flanking the 

fusion point using OMIM and COSMIC. If this information was unavailable, we searched the 

web with Google using a combination of keywords comprising the gene name followed by 

“fusion RT-PCR”. 348 unique fusions for which we managed to retrieve complete 

information as well the number of oligos complementary to the 5’ and 3’ moiety of each 

fusion partner are listed in Table S1. We note that this coverage represents a very stringent 

estimate in the sense that it is based on the shortest fusion variants described in the literature, 

even though their frequency is low in most of cases. 

 

Cells and Tissues 

We obtained cells from ATCC unless otherwise stated. We retrieved hematologic specimens 

in methanol-acetic acid 3/1 vol./vol. from the archive of the Division of Hematology of 

IRCCS Policlinico San Matteo after approval of the study by the institutional Ethical 

Committee. We found that highly efficient and durable attachment of cells to both uncoated 

microscope slides and coverglasses can be achieved by either spotting cells in methanol-

acetic acid 3/1 vol./vol. (MAA) manually or by cytospin, as well as by spotting cells 

suspended in an aqueous buffer by cytospin, followed by fixation with MAA. This procedure 

avoids time-consuming and inefficient attachment of suspended cells to coated coverglasses 

(e.g. with poly-L-lysine) as well as exposure to the carcinogen formaldehyde. Moreover, cells 

in cytogenetics laboratories are almost universally stored in MAA fixative or its variants (e.g. 
	  



Carnoy’s fixative), making our method readily applicable to archive material and to samples 

routinely collected by diagnostics laboratories. For CML specimens, we spotted 5 µl of cell 

suspension in MAA on No. 1 coverglasses (VWR VistaVision™, catalogue no. 16004-098) 

mounted on microscope slides (VWR VistaVision™, catalogue no. 16004-422), and let the 

cells spontaneously dry at room temperature. We stored spotted cells dry in ambient air up to 

4 months before analysis. 

 Permission to conduct mice experiments was granted by the Italian Ministry of Health 

(approval number 218-2009-B). We prepared mouse xenografts by injections in the flank (107 

cells per mouse) or in the tail vein (107 cells per mouse) of NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ mice. We sacrificed mice when the subcutaneous tumors reached 10 mm in 

diameter or after 35 days for lung tumors. Tumors were excised, immediately fixed in 

formalin and paraffin embedded following standard procedures. Tissue sections were de-

paraffinized and post-fixed, and subjected to mild tissue digestion with pepsin and auto-

fluorescence quenching with NaBH4. 

 

smFISH 

We prepared deparaffinized tissue sections in D-Limonene Clearant (VWR, catalogue no. 

95057-818), followed by re-hydration, post-fixation in 4% formalin in 1× PBS for 10 min at 

room temperature, and RNA retrieval for 45 min at 80 °C in 0.01 M sodium citrate pH 6. 

Afterwards, we de-hydrated samples in ethanol and covered the tissue with a hybridization 

chamber as described below. We digested tissue with 0.025% pepsin in 0.01 M HCl, and then 

quenched auto-fluorescence by repeatedly flushing the chamber with NaBH4 1% in 1× PBS 

solution over a period of 10 min at room temperature. We then washed the tissue three times 

10 min each in RNAse-free water, and stored samples in Ribonucleoside Vanadyl Complex 

(RVC, NEB, catalogue no. S1402S) diluted 1:20 vol./vol. in 2× SSC buffer (Ambion, 

catalogue no. AM9765) (SSC-RVC buffer) at 4 °C until hybridization was performed. 
	  



 We covered cell spots or tissue sections mounted on coverglasses with 22×22 mm 

SecureSeal hybridization chambers (EMS, catalogue no. 70333-10). All subsequent steps 

consisted of manual injections/aspirations of approx. 100 µl of a given solution into/from the 

hybridization chamber. Before hybridization, we briefly re-hydrated cells by filling the 

chamber twice with SSC-RVC at room temperature. We quickly solubilized cellular lipids by 

filling the chamber with SSC-RVC supplemented with Triton X-100 0.5% and incubating 10 

min at room temperature. We washed the cells twice with SSC-RVC, and equilibrated them 

for 5 min at room temperature with RNA Wash buffer (RWB) containing 2× SSC buffer and 

Formamide 25% (Ambion, catalogue no. AM9342). Afterwards, we filled the chamber with 

RNA Hybridization buffer (RHB) containing 2× SSC buffer, Formamide 25%, Dextran 

Sulphate 10% (Sigma, catalogue no. D8906), E. coli tRNA (Sigma, catalogue no. R4251), 

Bovine Serum Albumin (Ambion, catalogue no. AM2616), RVC and 40 ng of the desired 

probes (the mass refers only to pooled oligonucleotides, excluding fluorophores, and is based 

on absorbance measurements at 260 nm). We preformed hybridization for 16-18 h at 30 ˚C, 

after which we quickly washed cells twice in RWB, incubated them in RWB for 1 h at 30 ˚C, 

and finally incubated them in RWB supplemented with DAPI 20 ng/ml for 30 min at 30 ˚C. 

For microscopy, we filled the hybridization chamber with a mounting solution containing 2× 

SSC buffer, 10 mM Tris, 0.4% Glucose, 100 µg/ml Catalase, 37 µg/ml Glucose Oxidase, and 

2 mM Trolox. 

 For smFISH in purified RNA, we extracted total RNA from cultured cell lines using the 

QIAshredder and RNeasy Plus Mini kits (Qiagen, catalogue no. 79654 and 74134, 

respectively). We prepared 1:1 vol./vol. mixes of Proteinase K 20 mg/ml (Ambion, catalogue 

no. AM2548) and purified RNA 500 µg/ml in nuclease-free water, and manually spotted 0.5 

µl of the mix in the center of No. 1 coverglasses (VWR VistaVision™, catalogue no. 16004-

098) attached with tape onto microscope slides (VWR VistaVision™, catalogue no. 16004-

422). We dried RNA-protein spots for 20 min at 80 °C in a hybridization thermoblock. We 

covered the spots with 22×22 mm SecureSeal hybridization chambers (EMS, catalogue no. 
	  



70333-10). All subsequent steps consisted of manual injections/aspirations of approx. 100 µl 

of a given solution into/from the hybridization chamber. We fixed RNA-protein spots with 

MAA for 5 min at room temperature, and quickly washed the chamber twice with SSC-RVC 

at room temperature. Afterwards, we filled the chamber with SSC-RVC and 40 ng of the 

desired probes. We performed hybridization for 5 min at 80 ˚C, followed by gradual cooling 

down to 55 ˚C for 10 min. Finally, we quickly washed the chamber twice in RWB, and filled 

it with an imaging solution containing 2× SSC buffer, 10 mM Tris, 0.4% Glucose, 100 µg/ml 

Catalase, 37 µg/ml Glucose Oxidase, and 2 mM Trolox. 

 

Karyotype analysis, RT-PCR, and DNA FISH 

Karyotyping, RT-PCR, and DNA FISH assessment of the clinical specimens listed in Table 

S3 were performed as part of routine cytogenetic diagnostics at the Division of Hematology 

of IRCCS Policlinico San Matteo. BCR-ABL1 DNA FISH was done with the Vysis LSI BCR 

ABL ES dual color translocation probe (Abbot Molecular, catalogue no. 08L55-020 CE), 

whereas the ipsogen BCR-ABL1 Mbcr Controls Kit (Qiagen, catalogue no. 670191) was used 

for RT-PCR. 

 

Image processing 

We filtered individual images with a high-pass Fast Fourier transform filter (cutoff 

pixels), preserving diffraction-limited signals (full width at half maximum,  pixels). 

After maximum projection, we repeated filtering of the resulting image. To separate 

unspecific signals caused by autofluorescence or non-specifically bound probes from real 

mRNA signals, we first estimated the noise by computing the power spectrum of linearized 

images. We constructed a linearized image by concatenating the rows of each image to a one-

dimensional vector. We then estimated the noise level,  as the mean of the power spectrum 

over spatial frequencies . We used a multiple of the noise level  as threshold.  

was sufficient to reject most sporadic signals while accepting most real signals. We identified 

= 9

w = 2.3

n

>1/w n 5n
	  



signals iteratively by first finding the brightest pixel in the projected image and then setting 

an area of size 3 3 around this pixel to zero (pixels in the 3 3 area belong to the same 

diffraction-limited signal). We continued this scheme until no more pixels exceeded the 

threshold. To determine the position and intensity of the signals, we fitted 2D Gaussians 

approximating the point-spread function (PSF) of the microscope. Fit parameters were  and 

 position, signal width , and intensity . We first fitted and using the positions of 

the brightest pixels determined in the previous step as initial values.  We assumed = 2.3 

pixels and approximated signal intensity by a local integration weighted with a Gaussian of 

width = 2.3 pixels and unit intensity. We used an iterative method (Thompson et al., 2002) 

to determine signal positions with sub-pixel accuracy. Subsequently, we determined intensity 

and width by least squares fitting keeping  and  fixed. We only considered signals with 

widths between 1.8 and 2.8 pixels. To exclude bright debris outside of cells, we segmented 

DAPI-stained nuclei, and discarded signals that were further than 20 pixels away from the 

edge of a nucleus. From the integrated intensity determined by least squares fitting, we 

calculated the maximum of the Gaussian that approximates the PSF. We only considered 

signals for which the ratio of this maximum and the noise (signal-to-noise ratio, SNR) 

exceeded a certain threshold . 

 

Scaling of α with the number of positive cells 

Using a mixing ratio of one K562 cell in x  TS cells, the expected PICCS correlation fraction 

is: α BCR−ABL1(x) = (cBCR
posα BCR−ABL1

pos + xcBCR
neg α BCR−ABL1

neg ) / (cBCR
pos + xcBCR

neg ) , where cBCR
pos/neg and 

α BCR−ABL1
pos/neg  are the density of BCR and BCR-ABL1 correlation fraction in K562 (pos) and TS 

(neg) cells, respectively. We derived cBCR
pos , cBCR

neg , α BCR−ABL1
pos  and α BCR−ABL1

neg  from pure 

populations of K562 or TS cells, and used them to predict α BCR−ABL1(x)  for different mixing 

ratios.  
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Estimation of PICCS accuracy and calculation of P values 

To determine the accuracy of α AB  we performed bootstrapping by randomly picking  (with 

replacement) NA  out of N  total signals, and performing standard PICCS analysis. We 

repeated this procedure 200 times, and estimated the error as the standard deviation of the 

obtained α AB  values. By bootstrapping the negative control samples, we created a null 

distribution for the null hypothesis that there are no fusion transcripts present. We calculated 

P values for correlation fractions based on this null distribution. 

 The error of the computed correlation fraction has two independent sources: 1) counting 

correlated signals; and 2) counting uncorrelated, randomly colocalized signals. 

1) Counting correlated signals 

We modeled the process of counting correlated signals of species B as a Bernoulli trial. The 

number of successful trials (i.e. correlated signals of species B) is governed by a binomial 

distribution. Given a correlation fraction α AB  and NA  measured signals of species A, we 

expect an average of α ABNA correlated signals of species B and variability NAα AB(1−α AB ) .  

Therefore, we expect a relative error ε1 =
1
NA

1−α AB

α AB

 from counting statistics alone. 

Figure S2D shows the relative error estimated by bootstrapping in a dilution series of K562 

with TS cells. Variability due to counting correlated signals does not sufficiently explain the 

observed relative error. However, the above stated expression for ε1  is a useful lower 

theoretical limit for the achievable relative error. 

2) Counting randomly colocalized signal 

The contribution of randomly colocalized signals is determined by linear fitting of Ccum  at 

length scales exceeding the typical correlation length rc . While the error for counting the 

number of signals of species B (which have density cB ) in a circle with area rc  around a 

signal of species A scales with cB , the pre-factor depends on details of the fitting. 
	  



Therefore this contribution of the error is modeled as ε2 =
k

α AB

cB
NA

 where k  is a constant 

that depends on the details of the linear fitting. Since both error sources are independent, the 

total relative error is ε = ε1
2 + ε2

2 = 1
NA

kcB
α AB
2 + (1−α AB )

α AB

. We empirically determined 

k  from the dilution series of K562 with TS cells where α AB  is considered to be the 

difference to the α AB  measured in the negative control. After estimation of ε

 by bootstrapping we calculated k = NAε
2α AB

2 − (1−α AB )α AB

cB
. k  was approximately 30 

pixels2 for the fitting parameters used. As shown in Figure S2D this model describes the 

observed error well. To measure α AB with a relative error ε  the number of signals NA  has to 

satisfy NA >
1
ε 2

kcB
α AB
2 + (1−α AB )

α AB

⎛
⎝⎜

⎞
⎠⎟

. 
	  

  



SUPPLEMENTAL TABLES 

Supplemental Table S1, smFISH Oligo Coverage for Known Fused Transcripts, Related 

to Figure 1C 

This table summarizes the oligo coverage for the shortest variant of known fusion transcripts 

with annotated information about which exons are retained in the fusion. This table can be 

downloaded as a single. xlsx file entitled “Table S1.smFISH Oligo Coverage for Known 

Fused Transcripts, Related to Figure 1C”. 

 

Supplemental Table S2, List of smFISH probes, Related to Figure S1A 

This table contains the transcript accession number and smFISH oligo sequences used to 

visualize the transcripts described in this study. This table can be downloaded as a single. xlsx 

file entitled “Table S2. List of smFISH probes, Related to Figure S1A”. 

 

Supplemental Table S3, Characteristics of Hematologic Samples and Donors, Related to 

Figures 2C and 2D 

This table contains disease type, tissue source, cytogenetic, and clinical outcome information 

related to the hematologic samples and donors used to obtain the data summarized in Figures 

2C and 2D. This table can be downloaded as a single. xlsx file entitled “Table S3. 

Characteristics of Hematologic Samples and Donors, Related to Figures 2C and 2D”. 
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