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Inclusions in biological membranes may interact via deformations they induce on the shape of that very

membrane. Such deformations are a purely physical effect, resulting in nonspecific forces between the

inclusions. In this Letter we show that this type of interaction can organize membrane domains and hence

may play an important biological role. Using a simple analytical model we predict that membrane

inclusions sort according to the curvature they impose. We verify this prediction by both numerical

simulations and experimental observations of membrane domains in phase separated vesicles.
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Introduction.—On the mesoscopic scale, cellular orga-
nization is governed by some well-known forces: hydro-
phobic, electrostatic, and van der Waals interactions [1].
These forces are responsible for the structure of the lipid
bilayer and highly specific protein-protein interactions.
However, due to their short range, they do not provide a
mechanism for some important biological functions like
the recruitment of proteins to certain regions in the plasma
membrane. Recently, attention was drawn to another type
of interaction: membrane curvature mediated interactions
[2–12]. These interactions are known to be long ranged [2]
and non-pairwise additive [6]. In this Letter we demon-
strate how membrane mediated interactions give rise to
long-range order in a biomimetic system. In the mem-
branes of living cells the breaking of the homogeneity by
the formation of patterns and long-range order carries
significant biological implications for processes like sig-
naling, chemotaxis, exocytosis, and cell division.

A well-suited system to study membrane mediated in-
teractions is a giant unilamellar vesicle (GUV) composed
of cholesterol and two other types of lipid, one with high
and one with low melting temperature. For many different
compositions such GUVs phase separate into liquid or-
dered (Lo) and liquid disordered (Ld) domains [13–15].
Typically one finds many domains of one phase on a
‘‘background’’ vesicle of the other phase. A line tension
on the boundary between the two phases causes the do-
mains to be circular in shape [16–18]. Moreover, domains
sometimes partially ‘‘bud out’’ from the spherical vesicle
to reduce the boundary length even further [14].

Recent experiments have shown that partially budded
membrane domains repel due to membrane mediated in-
teractions [14,19,20]. From measurements of domain fu-
sion dynamics [19] and the distribution of domain sizes
[20] it became evident that membrane mediated interac-
tions require a minimum domain size. If domains are too
small their curvature equals that of the surrounding mem-

brane. In that case the line tension between the Lo and Ld

phase cannot push the domains out of the background
membrane. Consequently, domains do not experience any
curvature related interaction [20]. As the domain circum-
ference grows due to repeated fusion events the influence
of the line tension eventually becomes bigger than that of
the bending rigidity and the domain partially buds out. This
leads to a repulsive interaction that increases with domain
size. Consequently, domain coalescence slows down sig-
nificantly after reaching a certain preferred size [19–21].
This preferred size can be found as a maximum in the
domain size distribution. Although the domains no longer
coalesce, they are by no means static, but rather mobile and
reorganize continuously. Because larger domains exert a
greater force on their neighbors, the domains will collec-
tively try to find a configuration in which larger domains
have a larger effective area around them. We expect that,
due to this size-dependent interaction, the domains demix
by size to achieve an optimal configuration.
We note that this effect is different from depletion

interaction in the sense that the distribution of domain
sizes in our system is narrow. Moreover, the interaction
we consider here is both long ranged and soft, whereas
depletion is an effect seen in systems with hard-core re-
pulsions. Depletion may of course still play a small role,
but can be ignored in comparison to the membrane medi-
ated interactions discussed here.
In this Letter we present an analytical model in which

we analyze the possible distributions of domains on phase-
separated vesicles, and find that they exhibit a striking
tendency to sort. We complement this model by perform-
ing Monte Carlo simulations using realistic membrane
parameters that were experimentally obtained in previous
work. Both the model and the simulations show that sorting
is an unavoidable consequence of the size-dependent na-
ture of the interactions and the finite area available on a
vesicle. In addition, we present experimental results on
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lipid vesicles, composed of cholesterol and two other types
of lipids, which exhibit phase separation, with Lo domains
in a Ld background. We find that these domains indeed sort
by size. In particular, we find a correlation between the size
of a domain and the size of its neighbors, which is repro-
duced by our simulations.

Analytical model.—A somewhat oversimplified analysis
of the total energy of a fully mixed and a fully demixed
system gives us a direct clue as to whether the domains
segregate into regions of identical-sized ones or not.
Because the bending rigidity of the Lo domains is much
higher than that of the Ld background [17], we assume the
domains to be rigid inclusions. To first approximation, also
conical transmembrane proteins can be described in the
same way. As was first shown by Goulian et al. [2], there is
a repulsive potential between two inclusions in an infinite
membrane that drops off as 1=r4, with r the distance
between the inclusions. Moreover, the interaction strength
depends on the imposed contact angle at the edge of an
inclusion, and for two inclusions with contact angles � and
� we have

V � �2 þ �2

r4
: (1)

Although the interactions are not pairwise additive, the
qualitative dependence of V on the contact angles and
inclusion distance does not change if more inclusions are
added to the system [4,6]. It is therefore possible to use a
mean-field description for a finite, closed system with
many inclusions, from which the prefactor in Eq. (1) can
be determined experimentally [20]. Moreover, we can use
effective pairwise interactions for nearest-neighbor do-
mains based on their size, as a function of their distance.

For simplicity we look at a system with only two sizes of
domains, which we will call ‘‘big’’ and ‘‘small’’ (see
Fig. 2). This choice is motivated by earlier experimental
results that show a narrow distribution of domain sizes
[20]. In our model the most abundant experimental domain
size (with a typical radius of 3:0 �m) corresponds to the
small domains. For the big domains we take a radius of

ð3:0 �mÞ ffiffiffi
2

p ¼ 4:3 �m, which means that their area is
twice that of the small domains.

Let us denote the number of domains by N, the number
of big domains by Nb ¼ �N and that of small domains by
Ns ¼ N � Nb ¼ ð1� �ÞN. Likewise we denote the con-
tact angle of a big domain by �b, that of a small domain by
�s, and the average contact angle of a domain’s nearest
neighbors (in the mean-field approach) by �. If we neglect
the small curvature of the background sphere, which has
surface area A, we can associate an ‘‘effective radius’’ to
each domain corresponding to the patch of area which it
dominates (i.e., in which it is the closest domain). In a
completely mixed system the effective radius of all do-

mains is equal and given by Reff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð�NÞp

. In a fully
mixed system each of the domains has 6� big and 6ð1� �Þ

small neighbors, which allows us to calculate the potential
of that configuration in the mean-field approach:

Vmixed ¼ 6

16
Nb

�2
b þ �2

A2=ð�2N2Þ þ
6

16
Ns

�2
s þ �2

A2=ð�2N2Þ ; (2)

where � ¼ ��b þ ð1� �Þ�s. In the fully demixed sys-
tem, the big domains can take up a larger fraction � of the
vesicle surface than they occupy in the fully mixed system.
By doing so they can increase the distance between them,
reducing the interaction energy. The penalty for this reduc-
tion is a denser packing of the small domains, but since
their repulsive forces are smaller, the total configuration
energy can be smaller than in the mixed system. We
consider the regions in which we have big and small

domains separately and get two effective radii: Rb
eff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�AÞ=ð�NbÞ

p
and Rs

eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðð1��ÞAÞ=ð�NsÞ

p
. For the

potential energy we obtain

Vdemixed ¼ 6

16
Nb

2�2
b

ðRb
effÞ4

þ 6

16
Ns

2�2
s

ðRs
effÞ4

; (3)

where we have assumed the number of domains is large
enough that ignoring the boundary between the two regions
is justified. For a fully mixed system we would have � ¼
�; i.e., the area fraction assigned to the big domains is
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FIG. 1 (color online). Comparison of the potential energies of
the completely mixed and completely demixed state of a vesicle
with domains of two different sizes. The freely adjustable
parameter � denotes the fraction of the vesicle’s surface area
claimed by the big domains. The dashed blue (dark gray) line
indicates the case in which the ‘‘big’’ and ‘‘small’’ domains are
equal in size (and hence have equal contact angles). The solid
red, yellow, and green (light gray) lines indicate contact angle
ratios �b=�s of 1.5, 2.0, and 2.5, respectively. Domain demixing
occurs for any value of� for which the potential ratio is less than
1 (black horizontal line). For comparison the number fraction �
of the big domains is indicated by the gray vertical line. Insets:
typical distributions of domains for small (left) and big (right)
values of �. For small �, the big domains are packed closely
together and the small domains claim the largest area fraction,
for large � the situation is reversed.
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equal to their number fraction. In the demixed system the
parameter� becomes freely adjustable and can be tuned to
minimize the interaction energy. Comparing the demixed
potential Eq. (3) to the mixed potential Eq. (2), we find

Vdemixed

Vmixed

¼ 2

�
�3

ð1� �Þ�2

�
�b

�s

�
2 þ ð1� �Þ2

ð1��Þ2
�

�
�
�ð1þ �Þ
1� �

�
�b

�s

�
2 þ 2�

�
�b

�s

�
þ ð2� �Þ

��1
:

(4)

Plots for several values of the parameters are given in
Fig. 1. For a range of values of the adjustable parameter
� the energy of the demixed state is smaller than that of the
mixed state; this effect becomes more pronounced as the
difference in contact angle (and therefore repulsive force)
increases. In the configuration which has the lowest total
energy the area fraction � claimed by the big domains is
indeed larger than their number fraction �.

Simulations.—In the analytical model we only consid-
ered the two extreme configurations of a completely mixed
and a completely demixed system. In order to be able to
study also intermediate states of the system we performed
Monte Carlo simulations. In these simulations we again
studied a binary system consisting of small and big do-

mains, where the surface area of the big domains is 2 or 3
times larger than that of the small ones. Starting from a
random configuration of big and small Lo domains on a Ld

sphere, we used Monte Carlo steps to find the energy
minimum, and consistently found demixing. A typical
example of a relaxation process and a configuration after
5� 106 time steps are shown in Fig. 2. The potential we
used in the simulations is based on Eq. (1) and given by
V ¼ ði2 þ j2Þ=r4, with i and j the contact angles of the
domains, which scale linearly with their radius [20].
Figure 2(o) shows the effect of different number fractions
and size ratios between the big and small domains. As
predicted by the analytical model, larger size ratios result
in larger differences in occupied area. Moreover, we find
that demixing occurs faster if the number fractions of the
big and small domains are not equal. To verify that the
sorting effect we observe is not due to depletion inter-
actions, we also ran simulations with hard-core repulsions.
These simulations did not result in any demixing after
10� 106 time steps.
Complementing the simulations on the binary system,

we also ran simulations of a system with an exponential
distribution of domain sizes, as found in experiment [20].
In these simulations we also found demixing. Including
multiple domain sizes allows for better comparison with
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FIG. 2 (color online). Monte Carlo relaxation of a random configuration of 70 small (red, light gray) and 30 big (blue, dark gray)
domains on a spherical vesicle. (a)–(j) A folded-open view of the entire vesicle, with the azimuthal angle along the horizontal direction
and the polar angle along the vertical direction. The pictures show configurations after (a) 1000 (b) 50 000 (c) 100 000 (d) 200 000
(e) 500 000 and (f) 1, (g) 2, (h) 3, (i) 4, and (j) 5� 106 steps. (k) Evolution of the mean nearest-neighbor distance over time, split out
to large (red, light gray) and small (blue, dark gray) domains. (l) Evolution of the mean nearest-neighbor size over time, split out to
large (red, light gray) and small (blue, dark gray) domains. Saturation appears to be reached after approximately 4� 106 steps.
(m) Schematic drawing of a cross section of the vesicle, showing the contact angles �s and �b of the small and big domains,
respectively. (n) The configuration on a sphere after 5� 106 time steps. (o) Occupied area fraction of the big domains � as a function
of their number fraction �. The plot shows the effect of different number fractions and domain size ratios on the sorting process. As
predicted by the analytical model, larger size ratios result in larger differences in occupied area fractions. Moreover, we find that the
speed of demixing increases with decreasing number fraction.
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experiment; in particular, we can look for correlations
between the size of a domain and its nearest neighbors.
An example of an obtained correlation plot is shown in
Fig. 3(a).

Experimental verification.—Our theoretical prediction
that domains segregate into regions of equal-sized ones is
confirmed by experimental observations. In experiments
detailed in [20], we studied the distribution of budded
domains on the entire vesicle. The vesicles we observed
were lying on top of other vesicles, preventing distortion
due to adhesion to the underlying coverslip. We consis-
tently found that vesicles have regions where some domain
sizes are overrepresented. An example of such an experi-
ment is given in the insets of Fig. 3(b), where two sides of
the same vesicle are shown. Quantitatively, we found that
there is a correlation between the size of a domain and the
average size of its nearest neighbors [Fig. 3(b)]. The do-

main sorting occurred consistently in all 21 vesicles with
budded domains we studied.
Conclusion.—As we have shown in this Letter, mem-

brane mediated interactions on closed vesicles lead to the
sorting of domains by size. Our analysis shows that this is
due to the fact that larger domains impose a larger curva-
ture on their surrounding membrane. We expect the same
sorting effect to occur for other curvature inducing mem-
brane inclusions, in particular, cone shaped transmembrane
proteins. This spontaneous sorting mechanism could po-
tentially be used to create polarized soft particles.
Moreover, similar sorting effects may occur in the mem-
branes of living systems without the need of a specific
interaction or an actively driven process.
This work was supported by funds from the Netherlands
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FIG. 3 (color online). Correlations between the size of a do-
main and that of its nearest neighbors. (a) Correlation plot of a
simulation in which the domain sizes follow an exponential
distribution. The simulation ran for 15� 106 steps; error bars
obtained using the last 5� 106 steps. Inset: Example of the
actual distribution of domains on the vesicle after 15� 106

steps. (b) Correlation plot averaged over 21 experimental
vesicles; the dashed line corresponds to the average 3:3 �m.
Domain sizes are grouped in equally sized bins. Inset: Two sides
of the same vesicle showing very different domain sizes. Scale
bar 20 �m.
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