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Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a
major functional role in cell signaling and membrane trafficking. Thereby the material properties of
multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics
and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and
experimental approach to determine the properties of phase-separated vesicle systems. First we develop an
analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental
data on vesicle shape and membrane fluctuations are taken and compared to the model. The parameters
obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.
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The recent interest in coexisting phases in lipid bilayers
originates in the supposed existence of lipid heterogene-
ities in the plasma membrane of cells. A significant role in
cell signaling and traffic is attributed to small lipid domains
called ‘‘rafts’’ [1,2]. While their existence in living cells
remains the subject of lively debate, micrometer-sized
domains are readily reconstituted in giant unilamellar
vesicles (GUVs) made from binary or ternary lipid mix-
tures [3]. Extensive studies of these and similar model
systems have brought to light a rich variety of phases,
phase transitions and coexistence regimes [4]. In contrast
to these model systems, no large (micrometer-sized) mem-
brane domains have been observed in vivo. If indeed phase
separation occurs in vivo, additional processes which can
arrest it prematurely must be considered. It has been sug-
gested that nanodomains might be stabilized by entropy [5]
or that, alternatively, active cellular processes are neces-
sary to control the domain size [6]. A third explanation is
that curvature-mediated interactions conspire to create an
effective repulsion between domains, impeding and ulti-
mately halting their fusion as the phase separation pro-
gresses. Each of these three processes depends critically on
membrane parameters such as line tension [7], curvature
moduli, and even the elusive Gaussian rigidities [8].
Although some studies report values [9] or upper bounds
[10,11] for these membrane parameters, a systematic
method to determine them from experiments that does
not require extensive numerical simulation and fitting is
lacking. We present here a straightforward fully analytical
method that allows for a precise, simultaneous determina-
tion of the line tension, the bending rigidity, and the
difference in Gaussian moduli from biphasic GUVs. Both
the liquid ordered Lo and the liquid disordered Ld phase
are quantitatively characterized with high accuracy. Our
method relies on an analytical expression for the shape of a
moderately budded vesicle. A one-parameter fit to experi-
mental shapes permits unambiguous determination of the
line tension and the difference in Gaussian moduli. Our

results provide important clues as to the origin and magni-
tude of long-ranged membrane-mediated interactions,
which have been proposed recently as an explanation for
the trapped coarsening [12,13] and the very regular domain
structure of a metastable state [14] found in experiments.
Furthermore, our results show that nanometer-sized phase-
separated domains will be stable in life cells.

Model.—The free energy associated with the bending of
a thin membrane is described by the Canham-Helfrich free
energy [15]. We ignore any spontaneous curvature of the
membrane because the experimental system has ample
time to relax any asymmetries between the leaflets. For a
two-component vesicle with line tension � between the
components, the free energy then reads
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where the �i and ��i�G are the bending and Gaussian moduli
of the two phases, respectively, the �i are their surface
tensions, and p is the internal pressure. In equilibrated
shapes such as our experimental vesicles, the force of the
internal Laplace pressure is compensated by the surface
tensions; consequently, both contributions drop out of the
shape equations [16]. For each phase, we integrate the
mean (H) and Gaussian (K) curvature over the membrane
patch Si occupied by that phase; the line tension contrib-
utes at the boundary @S of the two phases. Using the
Gauss-Bonnet theorem, we find that the Gaussian curva-
ture term yields a constant bulk contribution plus a bound-
ary term [17].

The axisymmetric shapes of interest (Fig. 1) are fully
described by the contact angle  as a function of the arc
length s along the surface contour. The coordinates
�r�s�; z�s�� are fixed by the geometrical conditions _r �
cos� �s�� and _z � � sin� �s��, where dots denote deriva-
tives with respect to the arclength. Variational calculus
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gives the basic shape equation [16]:

 

� cos ��
1

2
_ 2 sin �

cos2 
r

_ �
cos2 �1

2r2 sin : (2)

This equation holds for each of the phases separately.
The radial coordinate r�s� and tangent angle  �s� must of
course be continuous at the domain boundary. Addition-
ally, the variational derivation of Eq. (2) gives two more
boundary conditions [18]:
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with Rn and  0 the vesicle radius and tangent angle at the
domain boundary, �� � �1 � �2, ��G � ��1�G � �

�2�
G , and

the domain boundary located at s � 0.
The sphere is a solution of Eq. (2); we can therefore use

it as an ansatz for the vesicle shape far from the domain
boundary. We split the vesicle into three parts: a neck
domain around the domain boundary, where the boundary
terms dominate the shape, and two bulk domains, where
the solution asymptotically approaches the sphere.
Perturbation analysis, performed by expanding Eq. (2)
around the spherical shape, then gives for the bulk do-
mains:

  �i�bulk�s� �
s� s�i�0

Ri
� ciRi log

�
s

s�i�0

�
: (5)

Here Ri is the radius of curvature of the underlying
sphere and s�i�0 the distance (set by the area constraint on
the vesicle) from the point r � 0 to the domain boundary.
As was shown by Lipowsky [7], the invagination length,

defined as the ratio �i � �i=� of the bending modulus and
the line tension, determines the size of the neck region. Our
three-domain approach applies when this invagination
length is small compared to the size of the vesicle. At s �
�i the line tension, rather than the bending modulus, be-
comes the dominant term in the energy. Self-consistency of
the solution requires that the deviation from the sphere
solution at that point be small, i.e., given by the dimen-
sionless quantity �i=Ri. This fixes the integration constant
ci.

Near the domain boundary,  must have a local extre-
mum in each of the phases and we can expand it as

  �i�neck�s� �  �i�0 �
_ �i�0 s�

1
2

� �i�0 s
2: (6)

The neck solutions must match at the domain boundary
and also satisfy conditions (3) and (4). Moreover, they need
to match the bulk solutions to ensure continuity of  and its
derivative _ . In total this yields seven equations for the
eight unknowns f �i�0 ; _ �i�0 ; � �i�0 ; sig. The necessary eighth
equation is provided by the condition of continuity of
r�s� at the domain boundary.

Combined, the neck and bulk components of  give a
vesicle solution for specified values of the material pa-
rameters f�i;��G; �g. This solution compares extremely
well to numerically determined shapes (obtained using the
Surface Evolver package [19], Fig. 3). Moreover, for the
symmetric case of domains with identical values of �, we
can compare to earlier modeling in Ref. [8]. The vesicle
can then be described by a single dimensionless parameter
� � R0=�, where 4�R2

0 equals the vesicle area. The ‘‘bud-
ding transition’’ (where the broad neck destabilizes in
favor of a small neck) is numerically found in Ref. [8] to
occur at � � 4:5 for equally sized domains; our model
gives a value of � � 4:63.

Experiment.—Giant unilamellar vesicles (GUVs) were
produced by electroformation from a mixture of 30%
DOPC, 50% brain sphingomyelin, and 20% cholesterol
at 55 �C. Subsequently lowering the temperature to 20 �C
resulted in the spontaneous formation of liquid ordered Lo
and liquid disordered Ld domains on the vesicles. The Ld
phase was stained by a small amount of rhodamine-DOPE
(0.2%). In order to stain the Lo phase a small amount
(0.2%) of the ganglioside GM1 was added, and subse-
quently choleratoxin labeled with Alexa 647 was bound
to the GM1 [20]. For imaging we chose a wide-field
epifluorescence setup [2] because short illumination times
(1–5 ms) prevent shape fluctuations with short correlation
times from being washed out. The raw data of a typical
vesicle are shown in Fig. 1. The lateral resolution of the
equatorial optical sections was limited by diffraction and
pixelation effects. In the normal direction, however, a high
(subpixel) accuracy was obtained. The upper inset in Fig. 1
shows a typical intensity profile along a line perpendicular
to the contour. We determine numerically the profile’s first
derivative (lower inset in Fig. 1) and fit the central part
around the maximum intensity with a straight line. The

FIG. 1 (color online). Fluorescence raw data [red (or dark
gray): Lo domain; green (or light gray): Ld domain] with super-
imposed contour [light blue (or gray)]. Insets: principle of
contour fitting; (a) intensity profile normal to the vesicle contour
(taken along the dashed line in the main image); (b) first deriva-
tive of the profile with linear fit around the vesicle edge (white
line). The red (or dark gray) point marks the vesicle edge.
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intercept with the x axis gives the position of the vesicle
edge. The positional accuracy achieved is typically 20 nm.
The contours obtained were subsequently smoothed by a
polynomial and all contours from the same vesicle (typi-
cally around 1000) were averaged to give the final result
for the mean contour.

Spectra of the shape fluctuations were obtained from
those parts of the contours that were nearly circular, i.e., far
away from the neck domain. Fluctuations were determined
for each single contour as the difference between the local
radius r and the ensemble averaged radius R of a circle
fitted to patches around the vesicles’ poles: u�s� � r�s� �
R where s is the arclength along the circle; see Fig. 2. The
experimental fluctuation spectrum was obtained by Fourier
transform as uk �

1
a

Ra=2
�a=2 dsr�s�e

�iks, where a is the arc-
length of the contour patch, and k � n 2�

a with n a nonzero
integer. Taking into account the finite patch size [21] and
following the spectral analysis of a closed vesicle shell
developed by Pécréaux et al. [22] leads to a power spec-
trum for the vesicle fluctuation

 hjukj
2i �

X
q

�
sin��k� q� a2 �

�k� q� a2

�
2
hjuqj

2isph: (7)

Here q � 2�
L m with m a nonzero integer, L � 2�R, and

hjuqj2isph the spectrum of the entire vesicle derived in [22],
where the overline indicates temporal averaging during the
illumination time. Equation (7) was derived from the
Canham-Helfrich free energy for a flat membrane with
periodicity L. However, as shown in [22], the spectrum
of a sphere with radius R differs from that of the flat
membrane only for the lowest wave numbers k.
Therefore we can use Eq. (7) to fit our fluctuation spectra
if we omit the two lowest modes. Examples of such fits are
shown in Fig. 2.

Results.—Fits of the fluctuation spectra using Eq. (7)
give the values of the bending moduli and surface tensions
of the two phases. Using these values, we fit the experi-
mentally obtained vesicle shapes with the model described

above. This leaves us with two parameters: the line tension
� between the two phases and the difference ��G between
their Gaussian moduli. Since the experimental data show
that  at the domain boundary follows a straight, continu-
ous line we further assume that the derivative _ is continu-
ous at the domain boundary (as suggested before [8,18]).
Imposing this additional condition fixes the value of ��G
for given �, leaving us with a single free parameter to fully
describe the system [23]. By fitting the experimental data,
we directly extract the line tension. An example fit is
shown in Fig. 3. Values found for the bending moduli are
8� 1� 10�19 J for the Lo domain and 1:9� 0:5�
10�19 J for the Ld domain. For the line tension we found
a value of 1:2� 0:3 pN, which is in the same range as that
estimated by Baumgart et al. [14]. Finally, the difference in
Gaussian moduli is about 3� 1� 10�19 J, in accordance
with the earlier established upper bound (�G 	 �0:83�)
reported by Siegel and Kozlov [10]. An overview of the
results is given in Table I.

Discussion.—Ultimately, one worries about the mem-
brane’s elastic parameters because their precise magnitude
has important consequences for the morphology and dy-
namics of cells. The literature is replete with theoretical
speculations which depend strongly on, among others, the
line tension. While the values we report apply to reconsti-
tuted vesicles, we can nonetheless use them in some of
these models to explore possible implications for cellular
membranes. The majority of the investigated vesicles fi-
nally evolved into the fully phase separated state. This
finding is in agreement with previous work by Frolov
et al. [5], which predicts, for line tensions larger than
0.4 pN, complete phase separation for systems in equilib-
rium. It should be noted that the line tension found is also
smaller than the critical line tension leading to budding:
recent results by Liu et al. [24] show that for endocytosis
by means of membrane budding both high line tensions
(>10 pN) and large domains are necessary. Therefore
nanodomains will be stable and will not bud. In cells,
however, additional mechanisms must be considered. To
explain the absence of large domains in vivo, Turner et al.
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FIG. 2 (color online). Fluctuation spectra of the ordered [red
(or dark gray) circles] and disordered [green (or light gray)
circles] domains. The corresponding best fits of Eq. (7) are
shown in blue (or gray) and black, respectively. Inset: Typical
real-space fluctuations along the vesicle perimeter.

FIG. 3 (color online). Example for an experimentally obtained
 �s� plot [red (or dark gray): Lo phase; green (or light gray): Ld
phase] together with the best fit of the model [blue (or gray): Lo
phase; black: Ld phase]. The dashed lines mark the transition
points between the neck and bulk domains. Insets: Fit to a
numerically obtained shape (using Surface Evolver).
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[6] make use of a continuous membrane recycling mecha-
nism. For the membrane parameters we have determined
such a mechanism predicts asymptotic domains of

10 nm in diameter. Our results, in combination with
active membrane recycling therefore support a minimal
physical mechanism as a stabilizer for nanodomains in
cells. A separate effect, purely based on the elastic prop-
erties of membranes may further stabilize smaller domains
in vivo. Recently, Yanagisawa et al. explored the conse-
quences of a repulsive interaction between nearby buds
[12] and reported that such interactions can arrest the phase
separation kinetics. The elastic perturbations induced by
domains in the membrane, as described in this Letter, are
obvious candidates for producing additional interactions
between buds at any distance, further assisting in the
creation of such a kinetic arrest. As Müller et al. have
shown for a flat membrane, two distortions on the same
side of an infinite flat membrane repel on all length scales
[25]. The experimental observation of multiple domains
ordered in (quasi-)crystalline fashion in model membranes
[14] strongly suggests a similar repulsive interaction in
spherical vesicle systems. This is indeed evidenced by
preliminary numerical exploration of this system using
Surface Evolver [19]. Membrane-mediated interactions
act over length scales much larger than van der Waals or
electrostatic interactions and could provide an alternative
or additional physical mechanism for processes such as
protein clustering and domain formation [13,26]. Our re-
sults and methods allow us not only to determine the
parameters relevant to processes like these, but also give
a practical analytical handle on the shapes involved. This,
in turn, will help decide between competing proposals for
mechanisms involving membrane bending: protein inter-
actions, endocytosis, and the formation and stabilization of
functional membrane domains.

This work was supported by funds from the Netherlands
Organization for Scientific Research (NWO-FOM) within
the program on Material Properties of Biological
Assemblies (No. FOM-L1707M and No. FOM-L2601M).

[1] K. Simons and E. Ikonen, Nature (London) 387, 569
(1997); R. G. W. Anderson and K. Jacobson, Science
296, 1821 (2002); M. Edidin, Annu. Rev. Biophys.
Biomol. Struct. 32, 257 (2003); F. R. Maxfield and
I. Tabas, Nature (London) 438, 612 (2005); J. F.
Hancock, Nat. Rev. Mol. Cell Biol. 7, 456 (2006).

[2] P. H. M. Lommerse, B. E. Snaar-Jagalska, H. P. Spaink,
and T. Schmidt, J. Cell Sci. 118, 1799 (2005).

[3] C. Dietrich et al., Biophys. J. 80, 1417 (2001).
[4] S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 94, 148101

(2005).
[5] V. A. J. Frolov, Y. A. Chizmadzhev, F. S. Cohen, and

J. Zimmerberg, Biophys. J. 91, 189 (2006).
[6] M. S. Turner, P. Sens, and N. D. Socci, Phys. Rev. Lett. 95,

168301 (2005).
[7] R. Lipowsky, J. Phys. II (France) 2, 1825 (1992).
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TABLE I. Values of the material parameters for five different
vesicles. The surface tensions and bending moduli of the Ld and
Lo phase are determined from the fluctuation spectrum; the line
tension and difference in Gaussian moduli are subsequently
determined using our analytical model.

�d
(10�7 N

m )
�d

(10�19 J)
�o

(10�7 N
m )

�o
(10�19 J)

�
(pN)

��G
(10�19 J)

1 2:8� 0:2 2:2� 0:1 0:3� 0:3 8:0� 1:3 1:5� 0:3 2:5� 2
2 5:8� 0:5 1:8� 0:2 2:1� 0:4 8:2� 1:5 1:2� 0:4 2:0� 2
3 3:5� 0:3 2:0� 0:1 2:0� 0:5 8:2� 1:4 1:2� 0:3 2:5� 2
4 2:8� 0:2 1:9� 0:1 2:5� 0:5 8:3� 1:2 1:2� 0:4 4:0� 2
5 2:3� 0:1 1:6� 0:1 0:6� 0:3 8:0� 1:6 1:1� 0:5 4:0� 3
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