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ABSTRACT A multitude of biological processes that involve multiple interaction partners are observed by two-color micros-
copy. Here we describe an analysis method for the robust quantification of correlation between signals in different color chan-
nels: particle image cross-correlation spectroscopy (PICCS). The method, which exploits the superior positional accuracy
obtained in single-object and single-molecule microscopy, can extract the correlation fraction and length scale. We applied
PICCS to correlation measurements in living tissues. The morphogen Decapentaplegic (Dpp) was imaged in wing imaginal disks
of fruit fly larvae and we quantified what fraction of early endosomes contained Dpp.
INTRODUCTION
In the past, several techniques have been developed for the
quantification of spatial correlation between two fluores-
cently labeled interaction partners. In particular, single-
molecule fluorescence assays have been used successfully
to measure colocalization (1–3). Single-molecule fluores-
cence techniques require only small amounts of fluorescent
labels and contain information about positional correlations
on subdiffraction length scales (4). However, the direct
mapping between single-molecule signals from two
different channels is prone to a systematic error: colocaliza-
tion is typically defined by a distance threshold below which
two signals are considered colocalized. Therefore, a priori
knowledge about the distribution of distances, about the
positional error, and about the experimentally unavoidable
alignment mismatch between two detection channels is
needed to find a proper threshold. Even without any real
correlation, this method will always yield colocalization
events due to accidental proximity of signals. This problem
aggravates with increasing signal density. Hence, even with
the highest spatial resolution, proximity is not the optimal
readout for correlation.

Fluorescence cross-correlation spectroscopy and image
cross-correlation spectroscopy (ICCS) directly determine
the cross-correlation between the two different color chan-
nels (5,6) without the need for a threshold. However, fluo-
rescence cross-correlation spectroscopy is restricted to fast
moving molecules and does not contain spatial information.
ICCS on the other hand produces quantitative results for the
correlation fraction but a nonuniform distribution of mole-
cules can bias the results. Image scrambling strategies can
relieve this problem (7), but they limit the length scale on
which correlations can be detected. ICCS also requires
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a certain minimal fluorescence signal which excludes, for
example, the study of receptors which are present in low
copy numbers only.

Two further, recently developed, techniques, which
address the correlation of two molecular species are cross-
correlation raster imaging correlation spectroscopy (8) and
the two-color number and brightness analysis (9). Although
these techniques are readily applicable on commercially
available microscopes and provide information about the
spatial distribution of correlated species they are sensitive
to microscope settings and fail to produce absolute numbers
for the correlation fraction. Apart from single-molecule
tracking, all above-mentioned techniques are diffraction-
limited, and therefore cannot measure the molecular corre-
lation length.

Here we show how the advantages of ICCS and single-
particle tracking can be combined in one analysis technique:
particle image cross-correlation spectroscopy (PICCS). This
technique is largely based on particle image correlation
spectroscopy (PICS) developed by us before (4). PICCS
uses high accuracy single-molecule/single-object position
data, but instead of correlating the positions of the same
molecular species at several points in time (as is done in
PICS), PICCS correlates the positions of two molecular
species at the same point in time in two separate channels
adopting the approach employed by ICCS (6).

In what follows, we first provide a theoretical description
of PICCS, after which we validate the method using fluores-
cent beads. One particular example for biological interac-
tions which can be studied with the help of PICCS is the
trafficking of the morphogen Decapentaplegic (Dpp)
through endosomes. Dpp forms a gradient in the developing
wing imaginal disk of the fruit fly Drosophila melanogaster,
ultimately controlling patterning and growth of the tissue.
Dpp originates from a stripe of Dpp-producing cells at the
anterior-posterior compartment boundary (10), and is
secreted to neighboring cells. With PICCS we determined
doi: 10.1016/j.bpj.2010.12.3746
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which fraction of early endosomes contained Dpp and
vice versa.
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FIGURE 1 PICCS algorithm. For all YFP signals (solid circles) the

number of CFP signals (open circles) is counted which fall into a circle

of radius l from a YFP signal. The total number is subsequently divided
THEORY

Particle image cross-correlation spectroscopy (PICCS) is
a method to quantitatively determine the correlation
between two interaction partners labeled with two spectrally
distinguishable fluorophores. The interaction partners can
be single molecules or extended objects. We assume that
their density is so low that they can be resolved individually
and their position determined with a high positional accu-
racy (11–13). For simplicity, we will denote the signals
coming from the two fluorophores by ‘‘YFP’’ and ‘‘CFP’’
without loss of generality. The task at hand is to determine
the correlation fraction of the interaction partners, i.e., to
determine the fraction of CFP signals which are correlated
with YFP signals (or vice versa).
by the number of YFP signals. By increasing l from 0 to lmax the correlation

function Ccum(l) is constructed. (Dashed line) Area in which the YFP

signals are used for analysis. This area is separated from the edges of the

image by lmax (in this figure lmax ¼ 2 mm is taken). The signal positions

were simulated with the following parameters: density of YFP signals

cYFP ¼ 1 mm�2, correlation fraction a ¼ 0.5 (results in a density of CFP

signals of cCFP ¼ 0.5 mm�2), and correlation length s ¼ 150 nm.
The PICCS algorithm

The first step in the PICCS analysis is identical to existing
single-molecule tracking methods (2,3): the position of
YFP and CFP signals is determined with subdiffraction
positional accuracy, for example by fitting two-dimensional
Gaussians to the fluorescence signals. Subsequently a cross-
correlation function Ccum(l) between the two channels is
calculated with an ensemble approach. Ccum(l) is equal to
the average number of CFP signals at time t þ Dt which
have a distance smaller than l to a certain YFP signal at
time t (Fig. 1). When both fluorophores are imaged at the
same time, Dt ¼ 0 s. To avoid edge effects, only those
YFP signals are used which lie farther away from the edges
of the image than a predefined maximal distance lmax (0 <
l < lmax, see dashed line in Fig. 1).

As detailed below, this procedure results in a correlation
function of the form

CcumðlÞ ¼ aPcumðlÞ þ cCFP$pl
2; (1)

if the uncorrelated CFP signals are distributed randomly
with a uniform density cCFP. Pcum(l) is the cumulative prob-
ability to find a distance smaller than l between a YFP and
a CFP signal, which are correlated. Here, a is the correlation
fraction, i.e., the fraction of YFP signals which are corre-
lated with a CFP signal. The value a ¼ 1 if there is a corre-
sponding CFP signal for any YFP signal and a ¼ 0 if CFP
and YFP signals are completely uncorrelated. An example
for Ccum(l) calculated from simulated data is given in Fig. 2.
FIGURE 2 The cumulative correlation function. (Open circles) Ccum(l)

calculated from simulated data. (Solid circles) Ccum(l) after subtraction of

the linear contribution (dotted line). To determine the slope p $ cCFP of

the linear contribution, a straight line is fitted to Ccum(l) between lmin and

lmax. The offset of this straight line is equal to the correlation fraction a.

The value s is equal to the distance lwhere the functionCcum(l)� p $ cCFPl
2

has the value a (1 � Oe).
The cumulative correlation function

To derive the expression for Ccum(l) given in Eq. 1 we start
from the probability P(x,y) to find two correlated signals
separated by a vector (x,y). The cumulative probability
Pcum(l) is found by integration of P(x,y) in polar coordinates
PcumðlÞ ¼ R l

0
dr r

R 2p

0
df Pðr;fÞ;

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

f ¼ arctanðy=xÞ:
(2)

The shape of the function Pcum(l) depends on the nature of
the interaction between the interaction partners and the posi-
tional accuracy for determination of the YFP and CFP
signals. The experimentally observed P(x,y) is found from
the convolution of the real correlation Pcorr (x,y), which is
characteristic for a specific interaction, and the probability
Biophysical Journal 100(7) 1810–1818
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density Ppos. acc. (x,y) describing the (apparent) correlation
due to the finite positional accuracy (14),

Pðx; yÞ ¼ R R
dx0dy0Pcorrðx � x0; y� y0ÞPpos: acc:ðx0; y0Þ

Ppos: acc:ðx; yÞ ¼ 1

2ps2
exp

�
� x2 þ y2

2s2

�
; (3)

where s ¼ ffiffiffi
2

p
d and d is the one-dimensional positional

accuracy.
In the simplest case, if the YFP and CFP signal are at the

same position, Pcum(l) is determined by the positional accu-
racy alone:

PcumðlÞ ¼ 1� exp

�
� l 2

2s2

�
: (4)

A fit of Eq. 4 to Pcum(l) with s as the free fit parameter
results in a value for the one-dimensional positional accu-
racy d ¼ s=

ffiffiffi
2

p
. More generally, s can be regarded as

a typical correlation length.
To accurately describe the experimentally determined

Pcum(l) we found that we had to assume two correlation
lengths (s1 and s2) (see Experimental Validation),

PcumðlÞ ¼ b

�
1� exp

�
� l2

2s2
1

��

þ ð1� bÞ
�
1� exp

�
� l2

2s2
2

��
;

(5)

where b is the fraction of data that has a correlation length
s1. We suppose that a broad distribution of positional accu-
racies explains this functional form of Pcum(l).

If, per image, there is only one pair of correlated signals
the correlation function Ccum(l) equals Pcum(l): Ccum(l) ¼
Pcum(l). If only for a fraction a of all YFP signals there
is a correlated CFP signal, we observe Ccum(l) ¼ aPcum(l).
Typically, there is more than one YFP signal per image and
therefore also more than one CFP signal. If l gets bigger,
neighboring CFP signals in close proximity are counted
by the PICCS algorithm although they are not correlated
with the YFP signal. Additionally there might be CFP
signals which are not correlated with any YFP signal.
These CFP signals, in close proximity or not correlated
with any YFP signal, lead to an additional contribution
cCFP $ pl2 to Ccum(l). Here we assume that the positions
of the CFP signals follow a uniform random distribution
with density cCFP. In total, Ccum(l) ¼ aPcum(l) þ cCFP $ pl

2.
If there are no CFP signals in addition to the ones corre-

lated with a YFP one, cCFP can be calculated from the
density of YFP signals cYFP, the correlation fraction a, and
the image area A by

cCFP ¼ aðcYFPA� 1Þ=A ¼ aðcYFP � 1=AÞhc�CFP: (6)

If a/A << cYFP, cCFP z acYFP. In general, cCFP ¼ c*YFP þ
cCFP, uncorr., where cCFP, uncorr. is the density of CFP signals
which are not correlated with any YFP signal.
Biophysical Journal 100(7) 1810–1818
Inhomogeneous, nonrandom distribution
of signals

In the form presented so far, the algorithm requires a random,
homogeneous distribution of CFP signals, which results in
the term cCFP $ pl2 in Eq. 1. In a real-life situation, the
assumption that all CFP signals are distributed randomly
with a uniform density might be violated. One reason is the
diffraction limit: if two molecules are too close to each other
(<200 nm), their fluorescence signals will merge and only
one signal is observed. Consequently, close to a given CFP
signal the probability to find another signal is decreased.
Additionally, there might be biological reasons for correla-
tions between the CFP signals. For example, receptors might
be distributed evenly (and nonrandomly) to achieve optimal
surface coverage. To correct for an inhomogeneous or
nonrandom distribution of CFP signals we can calculate the
spatial correlation among CFP signals by regular PICS (see
Semrau and Schmidt (4)). Any correlation between the posi-
tions of CFP signals will cause a deviation from the simple
quadratic contribution cCFP $pl

2, we assumed. The influence
of this correlation on the cumulative correlation Ccum(l)
between the two color channels depends on the distribution
of distances betweenYFP andCFP signalsPcum(l).We define
the function s(r,l) as the number of CFP signals in a circle
with radius l if the distance between the YFP signal and
a correlated CFP signal is r. For YFP signals which have
a correlated CFP signal, the contribution of uncorrelated
signals can be written as

a

Z N

0

dr sðr; lÞvPcum

vr
ðrÞ; (7)

where vPcum(r)/vr gives the probability for a distance r
between a pair of correlated signals. For YFP signals
without correlated CFP signals, we keep the simple
quadratic dependence and arrive at

CcumðlÞ ¼ aPcumðlÞ þ ð1� aÞc$pl2
þa

RN

0
dr sðr; lÞvPcum

vr
ðrÞ; (8)

where s(r,l) is determined empirically from the experimental
data by correlation of a virtual YFP channel image with the
measured images from the CFP channel. The virtual YFP
image is constructed from the CFP image by placing YFP
signals at a distance r from a CFP signal. The Ccum(l) deter-
mined for a given r with the standard algorithm is equal to s
(r,l). Typically, the results from 20 virtual images (where the
YFP signals are positioned equally spaced on circles with
radius r around the CFP signals) are averaged to obtain s(r,l).

Subsequent to the calculation of s(r,l), the correction is
determined numerically by the following self-consistent
algorithm:

Step 1. As an initial guess for the correction term, deter-
mine the slope of the linear part of Ccum and use the
original correction term from Eq. 1;
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Step 2. Subtract the correction;
Step 3. Determine a as the average over the flat part of

the resulting curve;
Step 4. Normalize to 1 and fit the model Eq. 5;
Step 5. Calculate the new correction according to Eq. 8,

then go to Step 2.

Steps 2–5 are repeated until the fit parameters change less
than a predefined threshold.

To validate this algorithm we have conducted simulations
in which two highly inhomogeneous situations were consid-
ered. First, we simulated a system with highly clustered
signals and secondly, signals on a distorted square lattice
(anti-correlated signals) were considered. The details and
results of these simulations are described in the Supporting
Material.
MATERIALS AND METHODS

Imaging of fruit fly wing disks

TheUAS-YFP-Dpp line was generated by using the existingUAS-GFP-Dpp

vector (15) where GFP was replaced by YFP (Venus) (16). The dppd8/

dppd12; dpp-Gal4/UAS-YFP-Dpp flies have an identical wing phenotype

to the dppd8/dppd12; dpp-Gal4/UAS-GFP-Dpp flies (15): they survive to

adulthood and have normally patterned wings, although smaller in size

(data not shown). For detection of early endosomes in wing imaginal disks,

we used the following genotype: tub-CFP-Rab5 (17). Previously we have

shown that Rab5-endosomes accumulate cargo upon a short or long chase,

respectively, in pulse/chase experiments (15). Expression of CFP-Rab5 is

moderate and no effects on the size or amount of early endosomes was

observed (17). Furthermore, experiments in A431 cells showed that a five-

fold overexpression of GFP-Rab5 compared to endogenous Rab5 did not

significantly change the population of early endosomes (18).

To obtain wing imaginal disks, third instar larvae (tubulin-Rab5-CFP;

dpp-Gal4/UAS-YFP-Dpp) were dissected in Clone8 medium (Shields &

Sang M3 Medium containing 2% Fetal Calf Serum, 2.5% Fly Extract,

12.5 IU Insulin/100 mL medium, and 1� Penicillin/Streptomycin;

Sigma-Aldrich, St. Louis, MO), after which the wing imaginal disks were

mounted in a custom-made sample holder. Nail polish was used for sealing

of the sample holder. The wing imaginal disks were imaged ~10 min after

dissection. Samples were discarded 1 h after dissection.

Imaging was done on a three-dimensional, wide-field fluorescence

microscope as previously described in Holtzer et al. (19). To image a z

range of ~4 mm, image stacks were generated using a piezo-driven objective

holder (Physik Instrumente, Karlsruhe, Germany) to move the objective

in axial direction. Each image stack contained five image planes with

Dz ¼ 0.7 mm between each image plane. The time between image planes

was 40 ms, during which the movement of the endosomes was negligible.

Therefore, each image stack was assumed to be acquired at one time point.

Wing imaginal disk samples were excited by an Argon-ion laser (Coherent

Laser, Santa Clara, CA) at either 458 nm to excite Rab5-CFP or 514 nm to

excite Dpp-YFP.

An alternating excitation pattern was used to distinguish between the two

fluorophores. The pattern consisted of one image stack which was excited at

458 nm and consecutively 10 image stacks were excited at 514 nm with

a stack rate of 1 Hz. The fast switching between laser lines was done using

an Acousto-Optic Tunable Filter (AAOpto-Electronic, Orsay, France). This

pattern was chosen to minimize photobleaching of the CFP, as the amount

of Rab5-CFP per endosome was lower than the amount of Dpp-YFP.

Imaging was done in the apical region of the cells because most of the endo-

somes are located there (20). Dpp-producing cells (the source) were located

by eye using a Mercury lamp (Zeiss, Oberkochen, Germany) for excitation.
Using a motorized stage the center of the image was typically 20 mm dis-

placed from the source, with an image area of 100 mm2 showing ~17 cells

in each experiment. The position of endosomes was detected as described

before (12,19).
Imaging of fluorescent beads

To experimentally validate the PICCS-method 20-nm yellow-green Fluo-

Spheres and 200-nm Tetraspeck microspheres (both Molecular Probes,

Leiden, The Netherlands) were used. Beads were mixed at different ratios

(including samples containing only yellow-green beads or tetraspeck

beads) and spin-coated onto a glass coverslip. Imaging was done using

alternating laser excitation using an Argon-ion laser (Coherent Laser) at

488 nm to excite both yellow-green beads and tetraspeck beads and

a 639-nm diode laser (Power Technology, Alexander, AR) to excite only

tetraspeck beads. Movies were taken at random positions on the coverslip

(image size 25 � 25 mm). For the samples with mixed beads, the number

of positions was 30 giving a total number of beads n > 200 for each mix-

ing ratio.
RESULTS

Error scaling simulation

To design a successful experiment it is crucial to know how
the error of the measured observables (a, cCFP, and s)
scales with the experimental and fitting parameters
(Fig. 2). We determined the error by application of the
PICCS algorithm described above to simulated data,
assuming that the signals are distributed randomly and
uniformly in space and the correlations are governed by
Eq. 1. First, we assumed that all CFP signals are correlated
with a YFP signal, so cCFP ¼ a(cYFP – 1/A), where A is the
area of the image. Then we added additional CFP signals,
which are not correlated with any YFP signal. For every set
of parameters, the simulations were repeated 100 times and
the errors Da, DcCFP, and Ds were determined as the stan-
dard deviation.

Experimental parameters

The experimental parameters are the correlation fraction a,
the density of YFP and CFP signals cYFP and cCFP, the corre-
lation length s, and the number of images M. As evident
from Fig. 3 a, all errors scaled approximately like 1=

ffiffiffiffiffi
M

p
where M is the number of acquired images. This behavior
assures that any error can be made small just by acquisition
of more images. The same scaling behavior was found for a,
see Fig. 3 b. As to be expected, the relative errors became
large when the correlation fraction was small or, equiva-
lently, more images would have to be acquired to achieve
a certain accuracy. The dependence of the error on the
density of YFP signals cYFP was different for the various
observables (Fig. 3 c). While the error for cCFP scaled like
the inverse square-root (1=

ffiffiffiffiffiffiffiffiffi
cYFP

p
), the errors of a and s

were fitted with the empirical model

A$
�
cYFP=mm

�2
��0:5þB$

�
cYFP=mm

�2
�0:25

:
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b FIGURE 3 Dependence of the relative errors

on the number of images M. (a) The relative errors

of a (circles), s (triangles), and cCFP (squares) all

scaled approximately like 1/OM (solid line). M ¼
10, a ¼ 0.5, cYFP ¼ 0.5 mm�2, and s ¼ 0.15 mm.

(b)Dependenceof the relativeerrors on the interaction

fractiona. The legend is the same as in panel a, where

cYFP ¼ 1 mm�2 (solid symbols), cYFP ¼ 10 mm�2

(open symbols), M ¼ 10, and s ¼ 0.15 mm in both

cases. The errors of all determined parameters

approximately scaled like 1/Oa (solid line), inde-

pendent of the density cYFP. (c) Dependence of the

relative errors on the density cYFP. The legend is

thesameas inpanela. The relativeerrorofa (circles)

and s (triangles) were fitted with the model A $
(cYFP/mm

�2)�0.5 þ B $ (cYFP/mm
�2)0.25 (solid and

dashed line, respectively). For a A ¼ 0.04, B ¼
0.12, which resulted in a minimum at 0.6 mm�2

and forsA¼ 0.07,B¼ 0.14,whichgave aminimum

at 0.5 mm�2. The relative error of cCFP (squares)

scaled approximately like c
�2=3
YFP . (Shaded line)

Linear fit in the logarithmic plot given by

y ¼ �0.66(cCFP /mm
�2) � 2.9). M ¼ 10, a ¼ 0.5,

and s ¼ 0.15 mm. (d) Dependence of the relative

errors on the density cCFP. The legend is the same

as in panel a. The relative error of a and s scaled

approximately like OcCFP (solid line), the relative

error of cCFP scaled like 1/OcCFP (dashed line).

M ¼ 10, cYFP ¼ 1 mm�2, a ¼ 0.5, and s ¼
0.15 mm. (e) Dependence of the relative errors on

s. The legend is the same as in panel a. The relative

error of a and cCFP did not change significantly with

s. The relative error of s scaled approximately like

1/Os (solid line is a linear fit in the logarithmic

plot given by y ¼ �0.52(cYFP/mm
�2)�2.8). M ¼

50, cYFP ¼ 1 mm�2, and a ¼ 0.5.
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This model has a minimum at (2A/B)4/3, which implies that
there is an optimal density cYFP, where the errors
are minimal. As will become clear below, the value of
this optimal density depends on the fitting parameters.
The errors of a and s initially decreased with increasing
cYFP because of the higher number of YFP signals, which
increased statistical significance. At the same time, cCFP
increased and therefore the contribution cCFP $ pl

2 increased
relative toa. Consequently, the errors ofa ands increased for
big densities cYFP.

So far, all CFP signals had a corresponding (i.e., corre-
lated) YFP signal. Next, we added additional, noncorre-
lated CFP signals. If the density of YFP signals cYFP and
the interaction fraction a were kept constant, a and s

scaled approximately like
ffiffiffiffiffiffiffiffiffi
cCFP

p
while the error of cCFP

scaled like 1=
ffiffiffiffiffiffiffiffiffi
cCFP

p
(Fig. 3 d). As to be expected, the pres-

ence of extra CFP signals made the determination of a and
s increasingly difficult. A change in the correlation length
s had significant influence only on the error for s which
scaled like 1=

ffiffiffi
s

p
. For increasing s, there were more data

points in a region which is important for the determination
of s, namely where Pcum(l) is significantly smaller than 1.
The errors of a and cCFP were approximately constant
(Fig. 3 e).
Biophysical Journal 100(7) 1810–1818
Fitting parameters

The fitting parameters are the length of the interval for the
linear fit lmax – lmin, its center lcenter ¼ (lmax – lmin)/2
and the distance between two data points Dl (Fig. 2).
Fig. 4, a–c, shows that the general scaling behavior was inde-
pendent on the position of the fit interval lcenter. However, the
position of the minimum error of a and s depended on lcenter:
The bigger lcenter, the smaller the optimal density cYFP. There-
fore, lcenter should be as small as the data allows—of course,
the fit interval must be in the region where Ccum(l) is linear
when plotted versus l2. Fig. 4, d and e, shows the dependence
on the errors on the length of the fit interval and the distance
between data points, respectively. The errors asymptotically
became constant for big fit intervals and small distances
between data points. Note that increasing lmax at constant
lmin enlarged the fit interval but also moved its center lcenter,
which is disadvantageous, see above.
Experimental validation

Fluorescent beads

To verify that PICCS retrieves the true correlation fractions
we performed experiments with known ratios of two kinds
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FIGURE 4 (a) Dependence of the relative error

of a on the center of the fit interval lcenter ¼ (lmax

� lmin)/2. The legend is the same as in Fig. 3 a,

where lcenter ¼ 0.925 mm (solid symbols),

lcenter ¼ 1.175 mm (shaded symbols), and lcenter ¼
1.375 mm (open symbols). The relative error of

a was fitted with the model A $ (cYFP/mm
�2)�0.5 þ

B $ (cYFP /mm
�2)0.25. A ¼ 0.04, B ¼ 0.05 (solid

line), A ¼ 0.04, B ¼ 0.09 (shaded line), and A ¼
0.04, B ¼ 0.13 (dashed line). That resulted in

minima at 1.9 mm�2, 0.9 mm�2, and 0.5 mm�2,

respectively. M ¼ 10, a ¼ 0.5, and s ¼ 0.05mm.

(b) Dependence of the relative error of s on the

center of the fit interval lcenter ¼ (lmax � lmin)/2.

The legend is the same as in Fig. 3 a, where

lcenter ¼ 0.925 mm (solid symbols), lcenter ¼ 1.175

mm (shaded symbols), and lcenter ¼ 1.375 mm

(open symbols). The relative error of s is

fitted with the model A $ (cYFP /mm
�2)�0.5 þ B $

(cYFP /mm
�2)0.25. A ¼ 0.07, B ¼ 0.15 (solid line),

A ¼ 0.08, B ¼ 0.25 (shaded line), and A ¼ 0.09,

B ¼ 0.34 (dashed line). That resulted in minima

at 0.9 mm�2, 0.6 mm�2, and 0.4 mm�2, respectively.

M ¼ 10, a ¼ 0.5, and s ¼ 0.05 mm. (c) Depen-

dence of the relative error of cCFP on the center

of the fit interval lcenter ¼ (lmax � lmin)/2. The

legend is the same as in Fig. 3 a, where lcenter ¼
0.925 mm (solid symbols), lcenter ¼ 1.175 mm

(shaded symbols), and lcenter ¼ 1.375 mm (open

symbols). The relative error of s was fitted with

the straight line (in the logarithmic plot). The slope

is �0.77 (solid line), �0.67 (shaded line), and

�0.62 (dashed line). M ¼ 10, a ¼ 0.5, and s ¼
0.05 mm. (d) Dependence of the relative errors on

the length of the fit interval (lmax � lmin). The

legend is the same as in Fig. 3 a. M ¼ 50, a ¼
0.5, s ¼ 0.15 mm, and cYFP ¼ 1 mm�2. (e) Depen-

dence of the relative errors on the step size Dl

(Fig. 2). The legend is the same as in Fig. 3 a.

M ¼ 50, a ¼ 0.5, s ¼ 0.15 mm, and c ¼ 1 mm�2.
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of fluorescent beads. The used beads were either detectable
in only one color channel or both. For example, a 1:1
mixture of these two types of beads corresponds to a corre-
lation fraction a of 0.5. Fig. 5 summarizes the results of our
control experiments. As evident from Fig. 5 d PICCS faith-
fully retrieved the correlation fractions expected from the
used bead ratios.

Dpp transport in wing disks of fruit fly larvae

Fig. 6 shows an example for an experimentally determined
correlation function. A wing imaginal disk of a fruit fly
larva expressing Dpp-YFP and Rab5-CFP was imaged.
Rab5 is a marker for early endosomes (18). In total, 28
z stacks in both channels were taken. The endosome posi-
tions for each image in a z stack were projected into one
plane resulting in 28 YFP-CFP image pairs. Fig. 6, a and
b, shows the first image stack for the YFP and CFP
channel. The correlation function is shown in Fig. 6 c
and the cumulative probability function Pcum(l) (Eq. 5) is
shown in Fig. 6 d.
The density of CFP signals cCFP and the correlation frac-
tion a were determined by fitting a straight line to the linear
part of Ccum(l) plotted against l2 (Fig. 6 c). The slope of this
line gives p $ cCFP while the offset is equal to a. After
subtraction of the linear contribution and division by a,
Pcum(l) remains.

In the experiments presented here, the signal intensity
varied between signals and because the positional accuracy
depends on the signal intensity, there is no well-defined
overall positional accuracy. This variation in intensity
results from variations of Dpp-YFP and Rab5-CFP content
in endosomes. Furthermore, endosomes are extended
objects and hence not necessarily diffraction-limited, which
also influences the positional accuracy. Therefore the func-
tion given in Eq. 5, which depends on two effective correla-
tion lengths (s1 and s2), was needed to describe the
observed data. Adding more effective correlation lengths
did not improve the fit significantly.

In Fig. 6, we show for one wing imaginal disk that the
correlated fraction of early Rab5-CFP-labeled endosomes
Biophysical Journal 100(7) 1810–1818
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FIGURE 5 Control experiment with fluorescent beads. (a) Image from

red excitation channel showing only the tetraspeck beads. (Scale bar,

2 mm.) (b) Image from the green excitation channel showing both tetraspeck

and yellow-green beads. (c) Cumulative correlation function for a correla-

tion fraction of a ¼ 0.56. (d) Correlation fractions determined in experi-

ments with five different ratios of single color and dual color fluorescent

beads. (Dashed line) y ¼ x. Errors were determined from simulations;

see Error Scaling Simulation.
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in the pool of all endosomes that contained Dpp-YFP in
a wing imaginal disk was ae,Dpp ¼ 46 5 4%. Correction
for a nonrandom distribution of CFP signals did not change
this result. Conversely, the correlated fraction of Dpp-YFP
containing endosomes in the pool of all Rab5-CFP-labeled
early endosomes was 59 5 5%. After correction for the
nonrandom distribution of YFP signals, the latter value
was finally increased to aDpp,e ¼ 66 5 5%. Hence, two-
thirds of the early endosomes contained Dpp, and approxi-
mately half of the Dpp-YFP-containing endosomes were
early endosomes.

Bleaching of the fluorescent label can potentially influ-
ence the results. If one of the two fluorescent labels bleaches
more quickly than the other, signals are lost and the correla-
tion fraction will decrease over acquisition time. To confirm
that the number of early endosomes (CFP signal) and Dpp-
containing endosomes (YFP signal) stayed constant, we
measured the total number of detected endosomes per image
stack (Fig. 7). On average, we detected 17 early endosomes
in a field of view (one early endosome per cell on average)
and the number of observed early endosomes was constant
around this value. The average number of Dpp-containing
endosomes found was 1.5 per cell. Fluctuations in the
number of detected endosomes were caused by movement
of endosomes in and out of the image volume or by endo-
somes that were moving too close together to be detected
individually. The latter effect is corrected for in the
PICCS-algorithm.
Biophysical Journal 100(7) 1810–1818
DISCUSSION

In summary, we have developed PICCS, a method to
robustly quantify the fraction of correlated signals in two-
color single-object or single-molecule microscopy experi-
ments. We have derived the functional form of the cumula-
tive correlation function and suggested a correction for
nonhomogeneous distributions of signals. Control experi-
ments with known ratios of single and dual color fluorescent
beads proved that PICCS faithfully retrieves expected corre-
lation fractions. We performed extensive simulations to
obtain the dependence of the error of the method on exper-
imental and fitting parameters. The reported error scaling
will help experimenters to get exact results with minimal
uncertainties.

To address whether PICCS can be applied to biological
questions, we applied the method to the transport of Dpp
in wing disks of fly larvae. Until now, experimental studies
of that system have only been able to provide coarse-grained
information, neglecting the discreteness of single cells.
Recently it was shown (20) that a steady-state monoexpo-
nential gradient of Dpp concentration is formed in the target
tissue. Although the latter study quantitatively described the
gradient on the level of the whole tissue, it provides insuffi-
cient insight into the (sub)cellular mechanisms that underlie
Dpp transport. Other experiments further suggest that Dpp is
spread by three different mechanisms: diffusion in the extra-
cellular matrix (21); receptor-mediated diffusion (22); and
intracellular transport (15) (i.e., a molecule undergoes
multiple rounds of endocytosis and subsequent recycling
into the extracellular matrix (23)). The extracellular diffu-
sion and receptor-mediated transport govern short-range
spreading, whereas intracellular transport is essential for
long-range spreading of Dpp in tissue (24).

To obtain a more detailed description of Dpp transport
and to ultimately determine the contribution of each mech-
anism to the overall Dpp transport, these mechanisms need
to be studied more extensively. Here we focused on the
intracellular transport of Dpp. Because processes in this
transport pathway are subcellular and involve single parti-
cles, it is necessary to use a technique such as single-particle
microscopy, which can detect these individual particles with
high accuracy. Three types of endosomes are involved in
intracellular Dpp transport: early, late, and recycling endo-
somes. Measuring what fraction of early endosomes con-
tained Dpp and vice versa in wing imaginal disks is the
first step in elucidating the intracellular transport pathway
of Dpp. We found that roughly two-thirds of all early endo-
somes contained Dpp and about half of the Dpp containing
endosomes were early endosomes.

This system presented several experimental challenges
which could successfully be tackled by PICCS. We found
that PICCS is able to correct for a nonrandom distribution
of endosomes in the wing imaginal disk. Furthermore,
because the columnar cells in the wing imaginal disk have
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FIGURE 6 Correlation fraction, signal density, and correlation length determined from experimental data. A wing imaginal disk was imaged for 300 s

using an alternating excitation method (described in Materials and Methods). Each image stack consists of five image planes (10 � 10 mm) separated by

0.7 mm in axial direction. Background of low spatial frequency was eliminated by applying a high-pass filter. (a) Raw image stack from the Dpp-YFP channel

(scale bar ¼ 2 mm). (b) Raw image stack from the Rab5-CFP channel. (c) Correlation function Ccum(l) obtained by PICCS. Fitting of the linear part yielded

a Dpp-YFP density of c¼ 0.125 0.02 endosomes $ mm�2 (solid line) and a correlation fraction of ae,Dpp¼ 0.465 0.04 (offset of the fitted line). (d) Pcum(l)

which resulted from subtraction of the linear contribution from Ccum(l) and division by ae,Dpp. The correlation lengths s1, s2 and the fraction s were deter-

mined by fitting Eq. 5 which gave s1¼ 715 17 nm, s2¼ 1615 34 nm, and s¼ 0.445 0.17, respectively. All errors were determined from simulations; see

Error Scaling Simulation.
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a length of ~30 mm in axial direction and most endosomes
are found in an apical layer of ~5 mm, the presence of
out-of-focus fluorescence cannot be avoided. However,
because the positions of individual particles were used,
this unwanted fluorescence did not influence the PICCS
results. Concerning this particular application, PICCS also
holds several advantages over biochemical approaches
such as endosome fractionation. Although endosome frac-
tionation has been successfully performed on culture cells
(25,26), attempts to perform endosomal fractionation in
developing epithelial Drosophila wing cells have not been
successful so far. Furthermore, endosomal fractionation
would give only information on the level of the whole tissue,
whereas with PICCS the differences in cargo at different
positions with respect to the spatial profile of the gradient
can be studied.

In the application presented above, PICCS was used to
correlate two different kinds of particles at the same point
in time. By introducing a time lag, PICCS can also retrieve
temporal changes correlation fraction and length, in analogy
to ICCS experiments (6). Because single-particle positions
can be measured with high temporal resolution, the correla-
tion dynamics could be retrieved on timescales down to
a few milliseconds. Due to the high positional accuracy of
single-particle data, PICCS is not limited by diffraction,
and the correlation length can therefore be determined
with nanometer accuracy.

So far PICCS has been used to cross-correlate data from
two channels which were separated using their different
colors. The method, however, is equally applicable to any
other molecular parameter that allows distinction of two
species like fluorescence signal level, fluorescence lifetime,
or polarization. Therefore, we believe that PICCS will be
valuable not only for the study of morphogen transport but
also for a broad class of biological problems involving
several interaction partners.
Biophysical Journal 100(7) 1810–1818
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FIGURE 7 Number of detected endosomes per image stack for (a) early

endosomes and (b) Dpp-containing endosomes. The number of endosomes

(signals) in both channels stayed approximately constant. The average

number of endosomes and the standard deviation are indicated for both

cases.
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