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ABSTRACT A new data analysis tool that resolves correlations on the nanometer length and millisecond timescale is derived.
This tool, adapted from methods of spatiotemporal image correlation spectroscopy, exploits the high positional accuracy of
single-particle tracking. While conventional tracking methods break down if multiple particle trajectories intersect, our method
works in principle for arbitrarily large molecule densities and diffusion coefficients as long as individual molecules can be
identified. The method is computationally cheap and robust and requires no a priori knowledge about the dynamical coefficients,
as opposed to other methods. We demonstrate the validity of the method by Monte Carlo simulations and by application to
single-molecule tracking data of membrane-anchored proteins in live cells. The results faithfully reproduce those obtained by
conventional tracking. Upon activation, a fraction of the small GTPase H-Ras is confined to domains of ,200 nm diameter,
which further substantiates the prediction that membrane organization is a determinant in cellular signaling.

INTRODUCTION

Single-particle tracking (SPT) and image correlation mi-

croscopy (ICM) have been proven powerful tools for the

investigation of local inhomogeneities in biological systems

(1–6). Driven by recent discussions on the refinement of the

classical fluid-mosaic model of the plasma membrane or-

ganization (7), both tools were applied to elucidate the con-

tribution of lipid organization and protein interactions to the

spatial organization of signaling molecules both in vitro and

in vivo. Several structures have been suggested to influence

the dynamics of membrane proteins; among these are

clathrin-coated pits, caveolae, lipid rafts, and the cytoskel-

eton. Lipid rafts, especially, have been heavily discussed as

possible organizational platforms for molecules involved in

cell signaling (8). Their existence and the actual order of

lipids in the plasma membrane is, however, still debated

(9–12). Recent studies have revealed that protein-protein

interactions may play an important role in the spatial orga-

nization of signaling proteins (13,14).

Single-particle tracking is ideally suited to study the

dynamics of membrane molecules, as this method is able to

locate optical probes with a high positional accuracy down to

a few nanometers. While gold nanoparticles and fluorescent

quantum dots, being relatively large, allow for extremely

long observation times (1,3,15,16), labeling of proteins with

fluorophores such as, e.g., eGFP or Cy5, is more suitable for

biological applications. Those fluorophores, however, suffer

from photobleaching. Therefore, tracking of individual mol-

ecules results in comparatively short trajectories (typically

10 steps), which makes the retrieval of individual trajectory

dynamical information exceedingly difficult. However,

given that the biological system is quite stable, the number

of observations obtained under the same conditions can be

large, to enable determination of dynamic properties of mem-

branes in great detail (17).

For the implementation of SPT, some a priori knowledge

about the expected molecular behavior is needed since algo-

rithms have to cope with the probabilistic nature of the track-

ing problem (3,18). This is especially a drawback for data

taken at higher concentrations, where molecular trajectories

can be accidentally mixed. Image correlation microscopy

(ICM) (5) and fluorescence correlation spectroscopy (2,3) do

not need any such prior information. However, both are

regular imaging techniques limited in resolution by dif-

fraction and thus by a spatial resolution of 200–300 nm.

To overcome the drawbacks of both SPT and ICM we

have developed a robust analysis method that combines both

techniques. The method is self-contained on any ensemble of

diffusion steps and therefore does not need individual traces

to be assigned like in SPT. Consequently, it can deal with

arbitrarily high molecule densities and diffusion constants

as long as individual molecules can be identified. The starting

point of this method is a correlation function, analogous to

spatiotemporal image correlation spectroscopy (STICS)

(19,20). A qualitative criterion for the general applicability

is given. Further, theoretical boundaries for the achievable

accuracy are discussed. Finally, the validity of the method is

demonstrated by application to data created by Monte Carlo

simulations and analysis of experimental data (17). The latter

proves the existence of functional domains smaller than 200

nm in the plasma membrane of 3T3-A14 fibroblast cells.

THEORY

For clarity, we develop the method for the ideal situation,

without, e.g., bleaching of molecules. In Appendix A, a
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rigorous treatment of nonideal situations is given, which

includes the effects of a limited field of view, finite positional

accuracy, finite exposure time, bleaching, and blinking of

molecules.

Algorithm

An image I obtained from SPT experiments is described as a

sum of delta peaks representing the positions ri of the

molecules:

IðrÞ ¼ +
m

i¼1

dðr2riÞ; r ¼ ðx; yÞ: (1)

Here m is the number of molecules in image I. The delta

functions represent only the positions of the molecules, and

therefore information about the intensity of the molecules is

discarded in Eq. 1. The positions are retrieved from the raw

image by fitting with the point-spread function of the micro-

scope as detailed in Schmidt et al. (18). For any pair of

images, Ia and Ib, which are separated in time by a time lag of

Dt, a spatiotemporal correlation function is defined

Cðd;DtÞ ¼ Æ
RR

A
dr IaðrÞIbðr1dÞæDt

Æmaæ
; (2)

where Æ. . .æDt denotes the ensemble average over all pairs of

images separated by a time-lag Dt, and A is the area of the

field of view of the microscope. The two images are shifted

by d with respect to each other and subsequently correlated,

i.e., the spatial integral of their product is calculated. If d
coincides with a movement during the time-lag Dt, the cor-
relation will be high. The precise connection to the diffusion

dynamics is given below. Note that C(d, Dt) is basically

the correlation function used in STICS (19,20), where the

denominator is given by the average number of molecules in

image Ia only. This normalization was chosen since it leads

directly to the cumulative probability distribution of diffu-

sion steps; see Eq. 5.

In an isotropic medium, the cumulative correlation func-

tion only depends on a distance l and time-lag Dt. By defini-

tion of d(r, f) ¼ (r cosf, r sin f) with polar coordinates

r and f,

Ccumðl;DtÞ ¼
Z l

0

drr

Z 2p

0

dfCðdðr;fÞ;DtÞ

¼ Æ
RR

A
dr IaðrÞmbðr; lÞæDt

Æmaæ

¼ Æ+ma

i¼1
mbðrai; lÞæDt
Æmaæ

; (3)

where rai is the position of molecule i in image Ia and

mbðr; lÞ ¼
R l

0
drr

R 2p

0
df Ibðr1dðr;fÞÞ. The expression

mb(r, l) is the number of molecules in image Ib that lie in a

circle with radius l around r.
The algorithm to obtain Ccum(l, Dt) from experimental

data, derived directly from Eq. 3 and the definition ofmb(r, l),

is illustrated in Fig. 1: for each molecule position rai in
image Ia, the number of molecules in image Ib are counted

whose distance to rai is smaller or equal to l. Subsequently
the contributions from all molecules in image Ia are summed

and averaged over all image pairs. The division by the

average number of molecules in image Ia finally results in

Ccum(l, Dt).

Relation to diffusion dynamics

The expression Ccum(l, Dt) contains both temporal (i.e.,

diffusion of molecules) and spatial (i.e., random spatial

proximity of molecules) correlations, which will be sepa-

rated below. The spatial correlations are illustrated by the

overlap of the circles in Fig. 1. Given that the molecules are

identical, their movement is mutually uncorrelated, and the

medium is homogeneous, Ccum(l, Dt) is simplified to

Ccumðl;DtÞ ¼ Æmbðr̃;lÞæDt; (4)

where r̃ is the arbitrary position of a molecule in image Ia.
Note that the summation in Eq. 3 cancels out with the

denominator Æmaæ under the given assumptions. It should be

mentioned that a global flow of the molecules is admissible.

The same holds for interactions between molecules if they

can be sufficiently described by a mean-field approximation.

The part of Eq. 4 that is caused by accidental spatial

proximity of different molecules is equal to the mean number

of molecules in a circle with radius l around a certain fixed

but arbitrary molecule. Given that the molecules are distrib-

uted uniformly and independently with a density c, the prob-
ability to find mmolecules in this circle is given by a Poisson

distribution with mean and variance of: m ¼ ðm2mÞ2 ¼
cpl2, where c can be estimated as c¼ (Æmbæ2 1)/A. The latter

FIGURE 1 Particle image correlation spectroscopy (PICS) algorithm. For

each molecule in image Ia (open circles) the number of molecules in image Ib
(solid circles) closer than l is counted (five, in this example). Note that the

peak in the center that lies within the overlap of two circles will be counted

twice. Hence, the contribution that is due to diffusion is four, whereas one

count is due to random spatial proximity of molecules.
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assumption is justified, given that the ensemble average

usually comprises many images of many different cells. Note

that the precise definition of c is the density of the neighbors

of a certain molecule. For higher densities this equals the

total density, since then (Æmbæ 2 1)/A � Æmbæ/A.
The part of Eq. 4 that contains the diffusion dynamics of

the molecules is equal to the cumulative probability Pcum(l,Dt)
to find a diffusion step with a size smaller than l if the time

lag is Dt. For normal diffusion with diffusion coefficient D in

two dimensions,

Pcumðl;DtÞ ¼ 12exp 2
l
2

4DDt

� �
:

The combination of both contributions leads to the following

form of Ccum(l, Dt):

Ccumðl;DtÞ ¼ Pcumðl;DtÞ1cpl
2
: (5)

The quantity calculated from experimental data by the

algorithm described above (Eq. 3) is an estimator for this

theoretically expected value. We now define a typical length-

scale lcum by

Pcumðlcum;DtÞ ¼ 1=2: (6)

After subtraction of cpl2 from Ccum this length scale can be

determined and the diffusion constant is calculated as

DDt ¼ 1

ln2

lcum
2

� �2

: (7)

Figure of merit and achievable accuracy

Determination of Pcum(l, Dt) from Eq. 5 is only practical if

the variance of the second term cpl2 is sufficiently small.

Since the average of M statistically uncorrelated pairs of

images is taken, the variance is 1/M times the value given

above for the single Poisson process. Note that successive

pairs of images are statistically uncorrelated since diffu-

sion is a Markov process, whereas successive images are

necessarily correlated. To get a qualitative criterion for the

number of image pairs to be taken for a significant result,

the standard deviation of the spatial correlations at lcum
(given by Eq. 7) is compared to the value of Pcum(l, Dt) at
lcum: ffiffiffiffiffiffiffiffiffiffiffiffi

cpl2cum
M

s
� 1

2
: (8)

We define a figure of merit h as twice this standard

deviation

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p ln2

cDDt

M

r
: (9)

Thus the result will be significant if h � 1. Note that

molecules may be arbitrarily dense (provided that the over-

lapping images still allow them to be identified as individual

molecules) or diffuse arbitrarily fast if only the number M of

image-pairs is sufficiently large.

If the whole correction term is small, cpl2 � 1, i.e.,

8p ln 2cDDt � 1; (10)

we directly obtain

Ccumðl;DtÞ � Pcumðl;DtÞ: (11)

To get an error estimate for the diffusion constant D the

probability density Pcum(l, Dt) is shifted vertically by 6h/2.
From the calculation of the typical length scale lcum of the

shifted curves, boundaries for the values of D are retrieved,

1

2
¼ Pcumðlcum;DtÞ 6

h

2
0

DD

D
� h

ln2
; (12)

for a sufficiently small h. D designates the mean D.
While this error originates from the method, there is an

intrinsic spread of the values obtained for lcum that is due to

the stochastic nature of diffusion. If M pairs of images with

Æmæ molecules on the average are acquired, the number of

diffusion steps to be analyzed is N ¼ M Æmæ. The probability
to find N/2 steps with a step-size smaller than lcum is given by

f ðlcum;NÞ ¼ KPcumðlcum;DtÞ
N
2ð12Pcumðlcum;DtÞÞ

N
2 ; (13)

where K is a normalization factor determined byRN
0

dlcumf ðlcum;NÞ ¼ 1. This probability density for lcum is

depicted in Fig. 2 for various values of N. For an increasing

number of diffusion steps, N, the function becomes

symmetric about the value given by Eq. 7 and the width

decreases. Hence the more images analyzed the less the

spread in lcum. Expansion of the exponentials in Eq. 13

around the maximum and estimation of the relative width for

N � 1 yields Dlcum=lcum ¼ ð1=ð2ln2ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1=2Þ2=N

q
where

FIGURE 2 Probability density f(lcum;N) versus lcum=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2DDt

p Þ for N¼
2, 4, 8, . . . , 1024. The curve for N ¼ 1024 corresponds to the sharpest

distribution. For N ¼ 512, expansion around the maximum was used to

estimate the width of the distribution (dashed curve). Arrows indicate

2 � ðDlcum=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2DDt

p Þ.
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lcum designates the mean lcum and equals the value given by

Eq. 7. Note that Dlcum is defined analogous to the standard

deviation as half the width of Eq. 13. Error propagation gives

DD=D ¼ 2Dl=lcum. To determine D with a relative error of

60.1, N � 300 diffusion steps are needed. Since the

accuracy scales as 1=
ffiffiffiffi
N

p
for N� 1, a relative error of60.01

requires N � 30,000 steps. Note that this error estimation is

only valid if the diffusion coefficient is determined from the

typical length scale lcum of Pcum(l, Dt). For the scatter

inherent to other analysis methods, see the article by Saxton

(21).

Since the described errors are uncorrelated, the total

error is

DDtotal

D
¼ 1

ln2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

21ð12ð1=2Þ2=NÞ
q

: (14)

For the adaptation of the method to nonideal situations that

include, e.g., bleaching, see Appendix A.

Diffusion modes

Given that the criterion below Eq. 9 is fulfilled, the method

developed up to this point is exact for the case of a single,

normally diffusing species. For other (anomalous) cases

(multiple fractions, intermittent, confined, or anisotropic dif-

fusion, diffusion with trapping or, more generally, diffusion

in a potential landscape), the diffusion coefficient determined

as described above is only an estimation of the mean

diffusion coefficient.

However, since the cumulative probability of step-sizes is

intrinsic to the correlation function Eq. 5, analysis of data

with more complicated diffusion models is straightforward.

E.g., for a two-fraction case, which is important for the data

analyzed below, molecules in image Ia are split in a fraction

of size a with diffusion coefficient D1 and one of size

1 2 a with diffusion coefficient D2. This results in

Pcumðl;DtÞ ¼ a 12exp 2
l
2

r
2

1

� �� �

1ð12aÞ 12exp 2
l
2

r
2

2

� �� �
; (15)

where r2i ¼ 4DiDt; i ef1; 2g. Hence, the probability distri-

bution Pcum(l, Dt) can faithfully be used to analyze more

complex inhomogeneous diffusion behavior.

MATERIALS AND METHODS

Monte Carlo simulations

For validation of the method, a Monte Carlo approach was used to generate

random diffusion steps and determine the diffusion coefficient as described

above. All simulations were performed within the MatLab programming

environment (The MathWorks, Natick, MA). With the help of the standard

MatLab routines for random number generation, M pairs of images were

generated in the following way: the first image Ia consists of molecule

signals scattered uniformly over an area Asim, which was bigger than the

physical field of view of area A. This was necessary for the simulation of

molecules that enter the area A during Dt. The value Asim was taken large

enough for the distribution of the molecules to be still approximately

uniform in A after each time step Dt. The average number of molecules in A

was fixed at five. Image Ib was obtained by letting each molecule in Ia
perform a random step in x and y directions. The step-size in both spatial

directions was determined by a Gaussian with variance 2DDt, i.e., all

simulated molecules obeyed normal diffusion. Subsequently, all molecules

that did not fall into the physical field of view were discarded. Furthermore,

it was ensured that diffusion steps up to lmax were adequately represented as

detailed in Appendix A. The algorithm derived above was subsequently

executed for the values l ¼ dl, 2 dl, . . . , lmax.

The value lcum was found from Pcum(l, Dt) by linear interpolation of the

distribution at 0.5. The results were normalized to 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2DDt

p
such that,

according to Eq. 7, a value of 1 corresponds to the most probable lcum. The

whole simulation was repeated 1000 times and the results were divided into

bins of width 0.05. The number of data points in each bin was subsequently

divided by 1000, which resulted in relative frequencies for lcum. For

comparison of the simulation with theoretical predictions, the probability

density derived in Eq. 13 was integrated over intervals of length 0.05, i.e.,

the bin size.

Since only a finite number of values for l can be considered, a binning

error that depends on dl is introduced. Consequently, the distribution of

the lcum values will always deviate from Eq. 13. In Fig. 3, results for

dl ¼ 0:01
ffiffiffiffiffiffiffiffiffi
DDt

p
; 0:5

ffiffiffiffiffiffiffiffiffi
DDt

p
, and

ffiffiffiffiffiffiffiffiffi
DDt

p
are compared with lmax ¼ 3. Since

we choose a very small density and diffusion coefficient (c ¼ 2.5 3 10�4/

mm2, DDt ¼ 0.02 mm2), the deviation from the theoretical distribution Eq.

13 is caused by the binning error alone. Obviously the deviation decreases

with decreasing dl. The simulations therefore use dl ¼ 0:01� ffiffiffiffiffiffiffiffiffi
DDt

p
. For

smaller or bigger diffusion coefficients or time lags, lmax is scaled

accordingly.

Single-molecule microscopy

The experiments were described in detail previously (17). In short,

constitutive active human H-Ras (V12) and constitutive inactive human

FIGURE 3 Binning error introduced into the estimation of lcum. One-

hundred image-pairs with diffusion constant D ¼ 1 mm2/s, Dt ¼ 20 ms at a

concentration of c ¼ 2.5 3 10�4/mm2 were used. The binning was set to

triangle, dl ¼ ffiffiffiffiffiffiffiffiffi
DDt

p
; square, dl ¼ 0:5

ffiffiffiffiffiffiffiffiffi
DDt

p
; and circle, dl ¼ 0:01

ffiffiffiffiffiffiffiffiffi
DDt

p
,

and compared to the distribution as given by Eq. 13 with N ¼ 500 (bars).
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H-Ras (N17) were coded into pcDNA3.1-eYFP (Qiagen, Hilden, Germany).

Cells from a mouse fibroblast cell line stably expressing the human insulin

receptor (3T3-A14) (22) were transfected with 1.0 mg DNA and 3 ml

FuGENE 6 (Roche Molecular Biochemicals, Indianapolis, IN) per glass

slide. 3T3-A14 cells adhered to glass slides were mounted onto the

microscope and kept in PBS at 37�C. For the observation of the mobility of

individual eYFP-H-Ras molecules, the focus of the microscope was set to

the dorsal surface membrane of individual cells (depth of focus�1 mm). The

density of fluorescent proteins on the plasma membrane of selected trans-

fected cells was,1 mm�2 to permit imaging and tracking of individual fluo-

rophores. Molecule positions were determined with an accuracy of �35 nm.

Fluorescence images were taken consecutively with up to 1000 images per

sequence. Typical trajectories were up to nine steps in length, mainly limited

by the blinking and photobleaching of the fluorophore (23). Data sets were

acquired with different time-lags Dt between consecutive images. The value

Dt varied from 5 to 60 ms.

RESULTS

Monte Carlo simulations

The influence of a growing molecule density, c, and number

of acquired image pairs M on the distribution were inves-

tigated for fixed DDt. The simulated concentrations corre-

spond to a range of 0.1–10 molcules/mm2 for typical

experimental values (D � 1 mm2/s, Dt � 20 ms).

The results for M ¼ 100 and M ¼ 1000 are presented in

Fig. 4. For fixed M, the distribution of lcum values broadens

with rising molecule concentration. It should be noted that

the distribution of lcum always peaked around the true value.

When the correction term for correlations due to random

spatial proximity of molecules was omitted (i.e., the second

term in Eq. 5), the peak lcum values shifted to a lower value.

Likewise the dependence of the method on the diffusion

constant D and the number of image pairs M was studied for

a fixed molecule density. For typical experimental values

(c� 1/mm2, Dt� 20 ms), the diffusion constants correspond

to a range from 0.1 mm2/s to 10 mm2/s. Results are shown in

Fig. 4. The distribution broadens with D, similar to the

results for growing molecule density. As predicted by Eq. 12,

the distributions become narrower for growing M, which

supports the claim that a higher number of image-pairs will

compensate for a high molecular density or diffusion con-

stant. The applicability of the method is, therefore, only

limited by the number of images that can be acquired for

identical conditions. The influence of bleaching and blinking

on the distribution of lcum is shown in Fig. 5. Molecules were

assumed to turn dark with a probability pdark per time-lag Dt.
The distribution broadens if this probability is increased but

stays peaked around the true value. The broadening is fully

accounted for by the reduction of the statistical sample size

N ¼ MÆmæ. E.g., for pdark ¼ 0.9, only 10% of molecules

survive, leaving only 50 visible diffusion steps instead of

500 for pdark ¼ 0. We do not consider explicitly here that

molecules can return into the fluorescent state (blinking),

since the only effect is an increase in the apparent molecule

density c, which was analyzed above.

Diffusional behavior of H-Ras mutants

Following the simulations, data on tracking individual H-Ras

mutants on the plasma membrane of 3T3-A14 cells at 37�C,
was analyzed. In a publication by Lommerse et al. (17), it

was found that both the constitutive inactive (N17) as well

the constitutive active (V12) variant of the protein displayed an

inhomogeneous two-fraction diffusion behavior. In that ear-

lier report the positions of proteins in an image sequence were

used to calculate trajectories from which further information

FIGURE 4 Distribution of lcum from simulations. (a,b)

Influence of molecule concentration at fixed DDt¼ 1 mm2/

s and given number of imagesM ¼ 100 (a), andM¼ 1000

(b) (solid triangle, c ¼ 0.1/mm2; solid square, c ¼ 1/mm2;

solid circle, c ¼ 10/mm2; open square, same values as for

the solid squares but without correction term; and bars,
distribution as given by Eq. 13 with N ¼ 500 for panel a

and N ¼ 5000 for panel b). (c,d) Influence of rising dif-

fusion constant for constant c ¼ 1/mm2 and given number

of images M ¼ 100 (c), and M ¼ 1000 (d). (Solid triangle,

DDt ¼ 0.1 mm2/s; solid square, DDt ¼ 1 mm2/s; solid

circle, DDt ¼ 10 mm2/s; open square, same values as for

the solid squares but without correction term; and bars,
distribution as given by Eq. 13 with N ¼ 500 for panel c

and N ¼ 5000 for panel d.)
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on the mobility was extracted. Here the same position data is

analyzed with the new algorithm without any a priori

knowledge about molecular mobility.

The molecule density c was estimated from the exper-

imental data. The slope of the linear part of Ccum(l) when
plotted versus l2 (Fig. 6) directly equals c �p. Note that c is by
definition of this procedure exactly the density of neighbor-

ing molecules introduced above. Subtraction of the correc-

tion term cpl2 successfully yielded Pcum(l, Dt) for longer

time lags (solid data points in Fig. 6). Artifacts due to

diffraction observed for shorter time lags were removed

by an empirical, self-consistent algorithm, as detailed in

Appendix B.

The value Pcum(l, Dt) was subsequently constructed for

each time-lag Dt between 4 and 60 ms. Data were fit accord-

ing to the two-diffusing-fraction model (Eq. 15) to yield the

fraction a and respective mean-square displacements r21 and
r22 for both mutants.

Fig. 7 compares the results obtained by the new unbiased

method (solid symbols, solid lines) with those obtained by

conventional tracking methods (open symbols, dashed lines)
in which an initial diffusion constant of D ¼ 1 mm2/s had

been assumed. Both data sets excellently match each other

within experimental accuracy; see Table 1. For the inactive

mutant (N17), 86% of the molecules fell into the highly

mobile fraction characterized by a diffusion constant of

D1 ¼ 0.94 mm2/s. The slow fraction was characterized by a

diffusion constant of D2 ¼ 0.10 mm2/s. Both fractions

followed free diffusion as seen by the linear dependence of

the mean-square displacements (r2i ) with Dt. In contrast, the

slow diffusing fraction of the active mutant (V12) displayed

a confined diffusion behavior (24) characterized by a con-

finement size of L ¼ 179 nm. In addition, the diffusion

constant of the fast, free diffusion fraction of the V12-mutant

was reduced to D1 ¼ 0.73 mm2/s and the fraction size

decreased to 63% in comparison to the inactive mutant N17.

DISCUSSION

The combination of the advantages of two well-established

techniques, ICM and SPT, allowed the development of a

robust analysis method, which retrieves spatiotemporal cor-

relations on the sub-wavelength and millisecond timescale.

By Monte Carlo simulations, the principle was proven, and it

was shown that the method can deal with short traces, high

molecule densities, and high diffusion constants provided

that individual molecules can be identified and the total

number of diffusion steps is sufficiently high. This holds

even without an initial guess of the diffusion coefficients.

Application to real experimental data shows that the method

is simpler than conventional tracking while identical results

are obtained. Structures with a diameter of ,200 nm were

faithfully identified. It should be noted, however, that the

method is not applicable for nonergodic systems, i.e., if it

becomes important that different molecules have different

spatial environments. If the movement of the molecules is

highly correlated, e.g., for interactions, which cannot be

handled by a mean-field approach, correction schemes like

the one presented in the Appendix have to be employed.

The results of change in mobility on the activation state of

H-Ras by the new unbiased method further supports ideas of

functional domains in the plasma membrane of mammalian

cells. The results agree well with the results of the FRET

(25), FRAP (26), EM (27), and single-molecule tracking

experiments (17) in all of which functional domains have

been observed. Likely localization of active H-Ras to these

FIGURE 6 Experimentally obtained cumulative correlation functionCcum(l).
Ccum(l) was obtained for individual H-Ras (N17) molecules at the apical side

of 3T3-A14 cells with a time-lag Dt of 20 ms (open circles, Ccum(l); solid

line, linear fit of the long distance data yielded a concentration c � 0.16/

mm2; and solid circle, after subtraction of the correction term). Fit of the

corrected data to Eq. 15 yielded a ¼ 0.906 0.02, r21 ¼ 0.0726 0.002 mm2,

and r22 ¼ 0.012 6 0.0003 mm2.

FIGURE 5 Distribution of lcum from simulations including photobleach-

ing. One-hundred image-pairs were analyzed at a concentration of 0.1/mm2,

diffusion constantD¼ 1mm2/s, and time-lagDt¼ 20ms. (Triangle, pdark¼ 0;

square, pdark ¼ 0.4; circles, pdark ¼ 0.9; open bars, distribution as given by

Eq. 13 with N ¼ 500; and shaded bars, distribution as given by Eq. 13 with

N ¼ 50.)
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functional domains is not a static process, but is dynamic as

suggested for trapping into cholesterol-independent domains

(27) and into more general transient signaling complexes

(25), which might be actin-dependent.

In summary, a robust method was presented that is supe-

rior to both ICM and SPT, surpassing the first in resolution

and largely simplifying the analysis methods required for the

second. Another intriguing application is the study of dy-

namical properties of interacting proteins in model mem-

branes. Because the newly developed method allows the

protein concentration to be varied over a wider range, a com-

parison to theoretical results obtained by a virial expansion is

rendered possible.

APPENDIX A: BEYOND THE IDEAL SITUATION

Limited field of view

In the experimental situation, the field of view is always limited. Typically in

the case of an epi-fluorescence setup the field of view is chosen in the center

of the Gaussian beam profile so that the illumination can be considered

uniform. Molecules, which diffuse out of view, not only limit the

observation time but it is also more probable for a long step to end out of

the field of view than for a small step. Consequently, long steps are

underrepresented in the experimental distribution. Therefore, a reduced field

of view is defined which has a width that is smaller than the full field of view

by an amount of 2 lmax. Only those peaks of image Ia that lie within the

reduced field of view are used. Thus, no steps are lost up to a length of lmax.

Finite positional accuracy

The limited positional accuracy makes a fixed molecule appear to move and

a free molecule to diffuse faster. Since the real diffusive motion and the

apparent motion due to the limited positional accuracy are uncorrelated, the

fluctuations simply add so that

DmeasDt ¼ DrealDt1s
2
; (16)

where Dmeas is the measured diffusion coefficient, Dreal is the real diffusion

coefficient, and s is the standard deviation of a Gaussian distribution that

FIGURE 7 Diffusional behavior of H-Ras. Fraction a

(a,d) and mean-square displacements r21 (b,e) and r
2
2 (c,f) as

functions of Dt for the constitutive inactive (N17) (a–c) and

the constitutive active (V12) mutant (d–f) of H-Ras. (Open

circles, dashed lines correspond to conventional tracking

results (17); solid squares, solid lines to results obtained by

the PICS method.) In the case of the conventional tracking,

error bars correspond to the error of the fitting of the two-

fraction model; for PICS, the size of the error bars is given

by Eq. 14.

TABLE 1 Comparison between results obtained by

conventional tracking with results obtained by particle image

correlation spectroscopy (PICS)

Conventional tracking PICS

H-Ras(N17)

D1(mm
2/s) 1.02 6 0.02 0.94 6 0.01

D2(mm
2/s) 0.16 6 0.03 0.10 6 0.01

a 0.84 6 0.05 0.86 6 0.01

H-Ras(V12)

D1(mm
2/s) 0.85 6 0.04 0.73 6 0.01

D2(mm
2/s) 0.16 6 0.04 0.10 6 0.01

L(nm) 217 6 46 179 6 10

a 0.61 6 0.05 0.63 6 0.01
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describes the positional error in one dimension. Either the positional

accuracy has to be determined independently or the time-lag Dt must be

varied so that the real diffusion coefficient can be obtained from the slope of

Eq. 16. Note that this problem does not interfere with the method presented

here; e.g., in the case of normal diffusion of one or two molecular species,

the functional form of the cumulative probability distribution Pcum remains

unchanged. For other diffusion modes, the correct form of Pcum, which

might be altered due the finite positional accuracy, has to be employed. An

extensive discussion can be found in Martin et al. (28).

Finite exposure/frame integration time

The fact that the fluorescence signal collection and integration time is finite

can lead to erroneous results, in particular for confined diffusion (29,30).

However, it was shown in Destainville and Salome (30) that the true values

for the diffusion coefficient and the size of the confinement area can be

retrieved from the data anyway. For the analysis performed above we

assume that the influence of confinement or a finite exposure time on the

cumulative probability distribution Pcum(l, Dt) is negligible compared to the

experimental error. This is quantified by the criterion given in Destainville

and Salome (30): if L is the linear size of the confinement, D is the diffusion

coefficient, and T is the exposure/integration time, then T � L2=12D should

be fulfilled. This is indeed the case for the experiments presented above with

L � 0.18 mm, D ¼ 0.1 mm2/s, and T ¼ 3 ms. So, it is sensible to expect a

distribution representing normal diffusion. It should, however, be stressed

that our method works in principle for arbitrary forms of Pcum(l, Dt).

Bleaching and blinking

Because of blinking and bleaching, single-particle trajectories of biologi-

cally relevant fluorophores inside cells are usually short (�10 steps). Given

that poff is the probability per time-lag Dt that a molecule turns dark or is not

found by the peak-fitting algorithm (see also Appendix B), only a fraction

(1 2 poff) of all diffusion steps is observed. Under the assumption that

bleaching is independent of the size of a diffusion step, Pcum is reduced by a

factor (12 poff). One consequence is that the figure of merit (Eq. 9) must be

generalized to

h ¼ 1

ð12poffÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16pln2

cDDt

M

r
: (17)

Accordingly Eq. 10 changes to

8p ln2
cDDt

ð12poffÞ � 1: (18)

The second consequence is that the experimental correlation function Ccum

has to be normalized to 1, after subtraction of the correction term cpl2, to
yield Pcum (see also Appendix B). Correspondingly, the theoretical

distribution function has to be divided by Pcum(lmax, Dt) where lmax is the

maximal l included in the analysis.

APPENDIX B: CORRECTION FOR POSITIONAL
CORRELATIONS DUE TO DIFFRACTION

Due to diffraction, the imaged Airy disks of the fluorescent molecules have a

finite width and two molecules separated by a distance smaller than this

width cannot be resolved. Therefore, one or both molecules will be absent in

the position data. Consequently, fewer molecules are found close to each

other than expected from the average molecule density. Thus, the molecule

positions that ultimately enter into the analysis are effectively correlated. In

the cumulative correlation function Ccum, determined from experimental

data, this is visible as a dip for small step-sizes, see Fig. 8.

Since the correlation length is of the order of the peak width (�0.4 mm)

this effect is only observable for small step-sizes, i.e., for slowly diffusing

molecules or small time lags. To circumvent this problem, we adapted our

algorithm in the following way: in the simple estimation, the number of

‘‘wrong’’ connections that the algorithm makes is described by the quadratic

correction term cpl2; now the amount of molecules that are found within a

certain radius depends on the size of the diffusive step. If the molecule turns

dark during the time lag there is no correlation. Therefore Eq. 5 is gen-

eralized to

Ccumðl;DtÞ ¼ ð1� poffÞPcumðl;DtÞ1 pdarkcpl
2

1 ð1� pdarkÞ
Z N

0

dr sðr; lÞ@Pcum

@r
ðr;DtÞ; (19)

where the function s(r, l) gives the number of molecules in a circle with

radius l if the diffusive step-size is r. The expression @Pcum(r, Dt)/@r gives

the probability for a step of length r. The value pdark—the probability per

time-lag that a molecule turns dark—is estimated once and kept fixed for all

data sets. For the data analyzed above, pdark ¼ 0.3 was used. The value poff
is the probability that a molecule either turns dark or is not found by the

molecule-fitting routine, e.g., since it came too close to another molecule.

The value 1� poff can be estimated by the height of Ccum after subtraction of

the correction term. The value s(r, l) is determined empirically from the

experimental data by application of the algorithm defined in the beginning

where, however, images Ia and Ib are identical. Furthermore, the center of the

circle, with radius l, in which the molecules are counted, is translated by a

vector of length r in arbitrary direction. The average over 20 equally spaced

directions results in the array of curves depicted in Fig. 8. Subsequent to the

calculation of s(r, l) the correction is determined numerically by the

following self-consistent algorithm:

Step 1. As an initial guess for the correction term, determine the slope

of the linear part of Ccum and use the original correction term from

Eq. 5.

Step 2. Subtract the correction.

Step 3. Normalize to 1 and fit the model.

Step 4. Calculate the new correction according to Eq. 19; go back to

Step 2.

Steps 2–4 are repeated until the fit parameters change less than a predefined

threshold. Note that this approach to correct for the effective correlation of

FIGURE 8 Correction for random spatial proximity of molecules at short

distances and short time lag. The dip in the data obtained for individual

H-Ras(N17) molecules at the apical side of 3T3-A14 cells taken at a time

delay of 5 ms is due to diffraction (open circles, raw data; solid lines, pure
spatial correlation for distances r from an arbitrary molecule; and r ¼ 0 mm,

0.11 mm, 0.22 mm, . . . , 1.21 mmwhere r rises in the direction of the arrow).
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the peak positions only works because the effect is the same for all

molecules. If positional correlations that are different for different molecules

become important, the approach is no longer functional.
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