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Membrane-Mediated Interactions Measured Using Membrane Domains
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ABSTRACT Cell membrane organization is the result of the collective effect of many driving forces. Several of these, such as
electrostatic and van der Waals forces, have been identified and studied in detail. In this article, we investigate and quantify
another force, the interaction between inclusions via deformations of the membrane shape. For electrically neutral systems,
this interaction is the dominant organizing force. As a model system to study membrane-mediated interactions, we use
phase-separated biomimetic vesicles that exhibit coexistence of liquid-ordered and liquid-disordered lipid domains. The
membrane-mediated interactions between these domains lead to a rich variety of effects, including the creation of long-range
order and the setting of a preferred domain size. Our findings also apply to the interaction of membrane protein patches, which
induce similar membrane shape deformations and hence experience similar interactions.
INTRODUCTION

Lipid bilayer membranes enclose and compartmentalize the

living cell, and as such represent the single most important

barrier that cellular sensing and transport processes face (1).

The detection of, and adequate response to, extracellular

cues in particular is strongly bound to the membrane. Rather

than allow ligands to pass through the membrane, changes

in external concentrations of specific agonists are typically

registered by transmembrane proteins and protein complexes.

The spatial organization of such proteins is crucial to the

successful transduction of signals across the membrane, and

facilitates many cellular processes (1,2). This organization

within the membrane has been the subject of intense studies,

and represents a fundamental biological challenge: How is it

that supramolecular organization comes about, and persists

in the two-dimensional fluid environment of the membrane?

After all, in a perfectly liquid environment, diffusion would

tend to strongly counteract pattern formation and would

quickly erase any significant density gradients. Moreover,

traditionally considered protein-protein interactions (hydro-

philic/hydrophobic, electrostatic, van der Waals) tend to be

either too short-ranged or too weak to effectively drive the

formation of heterogeneities.

Protein interactions mediated by the membrane have been

suggested as a possible mechanism to overcome the limita-

tions set by short-ranged conventional interactions. The

membrane may effectively mediate protein interactions in

several ways. The first is by creating local inhomogeneities

in membrane composition, particularly in the emergence of

small domains enriched in particular lipid species (3,4). These

domains may present transient or persistent target sites for
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protein aggregation due to protein confinement or specific

lipid-protein interactions. A second possibility is that single

lipids or proteins interact via hydrophobic mismatches. If

the length of the hydrophobic domain of a protein or lipid

does not match the thickness of the surrounding membrane,

this configuration will carry an energy penalty. To reduce

that penalty, lipids or proteins may aggregate with similar-

sized ones. The interaction due to hydrophobic mismatch is

short-ranged and independent of overall membrane curvature

(5). A final possibility is that proteins locally distort the

membrane shape (6–9). Such distortions lead to an effective

interaction between them through the differential curvature

they impart. Aggregates of proteins, especially, could interact

via membrane curvature. Such interactions would have bio-

logical implications, for example, for the assembly of protein

coats and endocytosis (2).

In this article, we study the existence and magnitude of the

last type of membrane-mediated interactions. We do so by

considering the dynamics of domains on partially phase-sepa-

rated vesicles containing cholesterol and two other species of

lipids (10). While no proteins are present in our system, these

small lipid domains mimic the proposed behavior of proteins

(11). They, too, locally distort the shape of the membrane.

Working with domains carries two great advantages over

using actual proteins. Firstly, the domains interact only

through the membrane shape deformations they induce.

Secondly, they are straightforward to visualize and track.

Earlier studies of the same system by Yanagisawa et al. (12)

focused on the dynamics of domain growth. They described

a slowing down of domain coalescence due to membrane-

mediated interactions. Rozovsky et al. (13) reported the

formation of regular patterns in a similar system. In their

experiments, the shape of the vesicle was strongly coupled

to phase separation due to substrate adhesion. In this study,

we use domains on freely suspended giant vesicles as a pro-

be to demonstrate the existence of membrane-mediated
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FIGURE 1 Analysis of experimental

data. (a) Cross section of a partially

budded vesicle. Overlay of 405-nm

excitation (perylene, red/dark shaded)

and 546-nm excitation (rhodamine,

yellow/light shaded). (b) Typical radial

distribution function for the center-

center distances of the domains on

a single vesicle. The nearest-neighbor

distance is denoted by a. (c–f) Image

analysis. The Ld phase is stained and

appears bright in the images; the Lo

phase appears dark. (c) Raw image;

(d) filtered image with region of interest

on top of the vesicle; (e) filtered image

converted to binary image by threshold-

ing, crosses marking the centroids of the

domains; and (f) raw image with long

and short axes of the domains over-

layed. All scale bars: 20 mm.
interactions. We develop a theoretical model that predicts the

existence of partially budded domains in this system, which

is a prerequisite for membrane-mediated interactions. We

measure the distribution of domainsizes and find a pronounced

preferred length scale. By analysis of the fluctuations of

domain positions, we quantify the strength of membrane inter-

actions and find a nontrivial dependence of the interaction

strength on domain size. Those effects are captured qualita-

tively in a simple model. Our findings shed new light on intra-

membrane interactions between protein patches. Moreover,

they also yield new information on the domain size distribu-

tion and the stability of the widely reported microphase sepa-

ration in multicomponent biomimetic membranes.

MATERIALS AND METHODS

GUV formation

Giant unilamellar vesicles (GUVs) were produced by electroformation in

a flow chamber (14,15) from a mixture of 30% DOPC, 50% brain sphingo-

myelin, and 20% cholesterol at 55�C. The liquid-disordered Ld phase was

stained by a small amount of Rhodamine-DOPE (0.2–0.4%), and the

liquid-ordered Lo with a small amount (0.2–0.4%) of perylene. The DOPC

(1,2-di-oleoyl-sn-glycero-3-phosphocholine), sphingomyelin, cholesterol,

and Rhodamine-DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

n-(Lissamine Rhodamine B Sulfonyl)) were obtained from Avanti Polar

Lipids (Alabaster, AL); the perylene from Sigma-Aldrich Chemie (Zwijn-

drecht, The Netherlands).

After formation of the GUVs the buffer (256 mM sucrose) was partially

exchanged by a buffer with a higher osmolarity (335 mM sucrose), resulting

in a difference of osmolarity of ~40–50 mM between inside and outside of

the vesicles. Subsequently lowering the temperature to 20�C resulted in the

spontaneous nucleation of liquid-ordered Lo and liquid-disordered Ld

domains on the vesicles. All reported observations were made on vesicles

that show partially budded domains, which are stable over extended periods

of time (see Movie S1 in the Supporting Material). In total, 21 vesicles were

recorded.

Vesicles were imaged at video rate with a model No. 902H2 Supreme

charge-coupled device camera (Watec, Orangeburg, NY) attached to an
inverted microscope (Axiovert 40 CFL, Carl Zeiss, Oberkochen, Germany).

The sample was illuminated continuously by a mercury lamp (HBO 50,

Zeiss) and suitable excitation filters. Fluorescence signal was collected using

appropriate dichroic mirrors and emission filters.

Image analysis

First, an equatorial image of the vesicle is taken to determine its radius and

center position (see Fig. S1). After taking the equatorial image, the focus is

moved to the top of the vesicle and the movement of domains is followed for

several minutes. Every frame of those movies (Fig. 1 c) is treated with

a bandpass Fourier filter to eliminate noise and background and a region

of interest around the center of the vesicle is chosen (Fig. 1 d). The filtered

grayscale image is subsequently transformed to a binary image by threshold-

ing (Fig. 1 e). The positions of the domains are determined from the

centroids of the domains (i.e., the center-of-mass, where mass corresponds

to pixel intensity here). The short and long axes of the domains are calcu-

lated from the moment-of-inertia tensor (Fig. 1 f). Since the domains are

in a liquid phase, their boundaries are circular. They appear elliptical due

to the projection onto a plane. The real radius of a domain is given by the

long axis of the observed ellipse.

The vesicle is assumed to be approximately spherical. Hence, the z posi-

tion of the domains relative to the equatorial plane can be calculated from the

position of the centroids and the center of the vesicle. All domain radii and

distances between domains are measured along the vesicle surface.

EVIDENCE FOR INTERACTIONS

We experimentally studied the dynamics of tricomponent

GUVs. Under appropriate conditions on composition and

temperature, the lipids in such vesicles phase separate into

liquid-ordered (Lo) and liquid-disordered (Ld) domains

(16). In our system, we typically observe many Lo domains

in an Ld background (see Fig. 1). After preparation by means

of electroformation, the vesicles have a spherical shape. By

increasing the osmotic pressure outside the vesicle, we

produce a slight increase in surface/volume ratio. For this

reason some of the vesicles show partially budded Lo

domains (see Fig. 1 a). Those domains posses long-term
Biophysical Journal 96(12) 4906–4915
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stability (see Movie S1; in experiments we observed stability

on the timescale of several hours). In contrast, flat domains,

which have the same curvature as the vesicle as a whole,

rapidly fuse until complete phase separation is attained

(12,17).

The stability of the vesicles with budded domains indi-

cates that the domains experience a repulsive interaction

that prevents them from fusing. This interaction also affects

the distribution of domain distances (radial distribution func-

tion) and domain sizes.

Radial distribution function

Fig. 1 b shows the radial distribution function (rdf) of the

center-to-center distance of domains for a typical vesicle.

The first (and highest) maximum in the rdf corresponds to

the first coordination shell, i.e., the nearest neighbors. The

distance between nearest neighbors is denoted by a. On

average a¼ 9 mm, while the radius of a domain is on average

3 mm and the vesicle radius equals 34 mm on average. Fig. 1 b
clearly shows two additional maxima roughly at 2a and 3a,

which correspond to the second and third coordination shell.

The rdf therefore indicates that the domains are not randomly

distributed but, that instead, their positions are correlated.

Consequently, the system of diffusing domains can be char-

acterized as a two-dimensional liquid with interactions.

Since a exceeds the typical domain radius by a factor of 3,

this interaction is different from mere hard-core repulsion

between the domains.

Size distribution

Fig. 2 shows the domain size distribution of all observed vesi-

cles. The distribution is not uniform, but instead shows an abso-

lute maximum, corresponding to a preferred domain size.

Moreover, there is a long tail to larger domain sizes that drops

off exponentially, as can be seen in a logscale plot (Fig. 2 inset).
This nonuniform distribution can be understood in a picture

that includes both domain fusions and domain interactions.

FIGURE 2 Distribution of domain sizes on all 24 vesicles. (Inset) Loga-

rithmic plot of the domain size distribution shows an exponential decay

toward large domains (solid line).
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As was already observed by Yanagisawa et al. (12), we

find that domains fuse when they are small. However, due

to the repulsive interaction, the fusion of domains becomes

kinetically hindered, and slows down significantly with

increasing domain size. When the repulsive interaction has

grown to the size of the thermal energy (kBT), the fusion

process will come to a halt and the vesicle with multiple

domains enters the (metastable) kinetically arrested state

that we observe in the experiments. Due to the finite avail-

able amount of domain area, the frequency-of-size occur-

rence decays exponentially for large domains (Fig. 2).

To check whether the local maximum and the exponential

tail observed in the experimental domain size distribution

can be explained by mutual repulsion of domains, we per-

formed Monte Carlo simulations of domain coalescence.

We assume that the rate for the fusion of two domains of

areas n and m can be written as the product of two factors:

the rate for random encounter by diffusion kdiff({Nn}), which

may depend on the distribution of domain sizes {Nn}, and

the probability pmerge
n;m for domain merger if the domains are

close to each other:

kn;m ¼ pmerge
n;m kdiffðfNngÞ: (1)

Our simulations start with 1/3 domains of identical size,

where 3 is defined as the initial domain area. During the

simulation, the domains are fused randomly with the rates

given above. The fusion rate is converted to a fusion proba-

bility pn,m by multiplication with a small time step Dt. Since

there are 1
2
NðN � 1Þpossible pairings of N domains, we write

the fusion probability as

pn;m ¼ kn;mDt

¼ 1
1
2
NðN � 1Þ pmerge

n;m

�
1

2
NðN � 1Þ

�
kdiffðfNngÞDt; (2)

with the total number of domains given by N ¼
P

n Nn.

If the time step Dt is chosen to be

Dt ¼ ½ð1
2

NðN � 1ÞÞkdiffðfNngÞ��1
, the fusion probability

becomes pn;m ¼ 1
1
2

NðN�1Þ pmerge
n;m .

In the following, we briefly sketch the Monte Carlo algo-

rithm we used; details can be found in Semrau et al. (18). In

each Monte Carlo step, first a pair of domains is chosen

randomly (which corresponds to the factor 1=ð1
2

NðN � 1ÞÞ
in pn,m) and the Monte Carlo time is increased by Dt. With

a probability of pmerge
n;m , the domain fusion is executed. In

the Supporting Material, we show that this Monte Carlo

scheme results in the correct domain fusion dynamics. For

short enough timescales, the system can be described by

a master equation (19)

_Nn ¼
1

2

Xn�1

m¼ 1

km;n�m Nm Nn�m �
XN
m¼ 1

kn;m Nn Nm; (3)

where Nn is the number of domains with area n; kn,m is the

fusion rate for domains of area n and m; and the dot refers
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FIGURE 3 Domain size distributions determined using

Monte Carlo simulations. (a) Distribution for four different

Monte Carlo times averaged over 1000 simulation runs

(open circles) including diffusion. Initial condition: 104

domains of area 3¼ 10�4. (b) Distribution for four different

Monte Carlo times averaged over 1000 simulation runs

(open circles), including diffusion and interaction of

domains. Here pmerge
n, m ¼ 10�6/(n*m). Initial condition: 104

domains of area 3 ¼ 10�4.
to the time derivative. A master equation approach disre-

gards the discrete nature of domain numbers and is therefore

only applicable for domain numbers much bigger than 1, i.e.,

a long time before complete phase separation.

For a simple case (kn,m ¼ k and pmerge
n;m ¼ 1), the master

equation (Eq. 3) is exactly solvable (see Supporting Mate-

rial). The solution for this case is an exponential distribution

for all times

NnðtÞ ¼ 3
4

ðktÞ2
exp

�
�2n

kt

�
; (4)

which suggests that the exponential tail observed in experi-

ments is simply a consequence of conserved total domain

area.

To take the spatial distribution and diffusion of domains into

consideration, we adopt the scaling argument used in the

literature (12,19): The time tdiff for two domains to

encounter each other at random, due to diffusion scales

like tdiff f hd2i/D(d) with d the domain radius and D(d)

the diffusion constant. Since we observe only a weak depen-

dence of the diffusion coefficient on domain size (D(d) z D;

see Fig. S4), we set kdiff({Nn}) ¼ p/hAi with the average

domain area hAi ¼ 1
N

P
n
nNn. This rate should give the

correct timescale for domain fusion apart from a constant

prefactor. To gauge the simulations with real experimental

timescales, we let the system evolve to complete phase sepa-

ration for noninteracting domains (pmerge
n;m ¼ 1) and compare

the resulting Monte Carlo time to measured timescales. In

the case of unbudded domains, which are free to fuse, the

time needed for complete separation was determined exper-

imentally (see (12), normal coarsening) and is ~1–10 min.

The corresponding Monte Carlo time in our simulations is

TMC ~ 2. Fig. 3 a shows intermediate domain size distribu-

tions for four different Monte Carlo times. Clearly, the expo-

nential behavior is conserved in the presence of diffusion,

and the typical lengthscale of that distribution (i.e., domain

size) increases over time.
In the kinetic hindrance model for budded domains the

probability for merger of two neighboring domains decreases

with domain size. Hence we assume pmerge
n;m ¼ c/(n*m). (Since

we do not attempt to obtain quantitative agreement with the

experimental results, any probability that decreases mono-

tonically with domain sizes would be acceptable as well.

See the Supporting Material for the results of a simulation

with pmerge
n;m ¼ c=

ffiffiffiffiffiffiffiffiffiffiffi
n � m
p

, which are qualitatively identical

to the results presented below). Fig. 3 b shows intermediate

domain size distributions for four different Monte Carlo

times. The simulations reproduce the two qualitative features

observed in experiments: the local maximum and the expo-

nential tail (see Fig. 2). We find that at TMC ~ 175, phase

separation is still not complete. This is much longer than

the time we found for complete phase separation in the

case without interactions (TMC ~ 2). The Monte Carlo simu-

lations therefore show that incomplete phase separation is

a quasistatic state.

DOMAIN BUDDING

The experimentally observed distributions of domain

distances and sizes can be explained by a repulsive

membrane-mediated interaction between the domains.

Domains that partially bud out from the vesicle locally deform

the membrane around them. Placing two budded domains

close together causes this deformation to be larger, carrying

a larger energy and resulting in an effective force between

them. This membrane-mediated force is therefore a direct

consequence of the fact that the domains partially bud out

from the vesicle. In this section, we analyze the energetics

of this partial budding process.

The first systematic study of domain budding was performed

by Lipowsky (20). He modeled the domains as either circular

disks in, or spherical caps on, a flat background. Domain

budding is then a consequence of a tradeoff between two

competing forces, which we will treat here in a coarse-grained,
Biophysical Journal 96(12) 4906–4915
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mean-field manner. For a more detailed view on the micro-

scopic processes involved, we refer to reviews by Lipowsky

and Dimova (21) and Seifert (22). The first force is the line

tension between the Lo domain and the Ld background, which

favors budding because it reduces the length of the domain

boundary. On the other hand, the bending energy of the Lo

domain resists budding because a budded domain has a higher

curvature. Lipowsky found that there is a critical domain size at

which there is a transition between an unbudded (or flat) state

and a fully budded domain. This lengthscale is called the invag-

ination length, given by x¼ ko/t, with ko the bending modulus

of the Lo phase and t the line tension on the domain boundary;

in our experimental vesicles we have ko ~8.0 � 10�19 J and

t ~1.2 pN, giving x ~ 0.7 mm (17). The invagination length

therefore sets the length scale at which we expect to find the

first occurrence of domain budding. Although we occasionally

see domains splitting off from the vesicle completely, we

mostly observe partially budded domains. In the model

proposed by Lipowsky, partial budding is not possible, sug-

gesting that we need to consider additional constraints on,

for example, the vesicle area and volume, and/or additional

energy contributions. Such constraints were also studied by

Jülicher and Lipowsky (23,24). They used numerical methods

to find the minimal-energy shape of a Ld vesicle with a single Lo

domain. Their results confirm the finding by Lipowsky that

there is a critical domain size for budding. Moreover, they

found that a constraint on the volume of the vesicle only

changes the budding point but does not modify the qualitative

budding behavior. In the following, we show that it is not suffi-

cient to just include area and volume constraints to explain the

shape of our experimental vesicles. If we also allow for stretch-

ing of the membrane, we do get the partially budded vesicle

shapes.

In general, the equilibrium shape of the membrane of a GUV

is found by minimizing the associated shape energy functional

under appropriate constraints on the total membrane area and

enclosed volume. The functional is composed of several

contributions, reflecting the energy associated with the defor-

mation of the membrane and the effect of phase separation of

the different lipids into domains. The contribution due to

bending of the membrane (i.e., the bending energy) is given

by the Canham-Helfrich energy functional (25,26):

ECH ¼ Ecurvature þ EGauss ¼
Z hk

2
ð2HÞ2þ kGK

i
dS: (5)

Here H and K are the mean and Gaussian curvature of the

membrane respectively, and k and kG the bending and

Gaussian moduli. We have not included a spontaneous

curvature, because in our experimental system the membrane

has ample time to relax any asymmetries between the

membrane leaflets. Using the Gauss-Bonnet theorem, we

find that the integral over the Gaussian curvature over

a continuous patch of membrane, such as one of our Lo

domains or the Ld background, yields a constant bulk contri-

bution (which we can disregard) plus a boundary term (27).
Biophysical Journal 96(12) 4906–4915
For a GUV with a uniform membrane, the shape that mini-

mizes the bending energy (Eq. 5) is found to be a sphere. If

the membrane contains domains with different bending

moduli k, the sphere is no longer the optimal solution.

However, within the bulk of each domain, far away from

any domain boundary, the sphere is still a good approxima-

tion of the actual membrane shape. For the case at hand,

where we have many small and relatively stiff domains in

a more flexible background, we follow Lipowsky (20) and

model the small domains as spherical caps on a vesicle

that also has spherical shape itself (see Fig. 4 d). Although

this model has the serious shortcoming that it suggests infin-

ite curvature at the domain edge, it remains a good approxi-

mation for the overall vesicle shape, because it corresponds

to the minimal-curvature solution of the shape equation on

the entire vesicle except a few special points. For the special

case that all domains are equal in size, we can describe them

with a curvature radius Rc and opening angle qc, and the

background sphere with its radius Rb and opening angle qb

(see Fig. 4 d). For the mean curvature energy of a system

with N domains, we then have

Ecurvature ¼ 4pko Nð1� cos qcÞ þ 4pkdð2� Nð1� cos qbÞÞ;
(6)

where ko and kd are the bending moduli of the Lo and Ld

phases, respectively. The Gaussian curvature contribution

is given by the boundary term

EGauss ¼ 2pNDkG cos qc; (7)

with DkG the difference in Gaussian curvature modulus

between the Lo and Ld domains. As mentioned above, we

model the fact that the lipids separate into two phases by as-

signing a line tension to the phase boundary. The energy

associated with that line tension t in the spherical cap model

is given by

Etension ¼ 2pt NRb sin qb: (8)

If the total number N of domains is fixed, the energy given by

the sum of Eqs. 6–8 is a function of four variables: Rb, Rc, qb,

and qc. These variables are not independent, since they are

subject to constraints. The first is that the membrane must

be continuous at the domain boundary, which gives the

geometric constraint

Rc sin qc ¼ Rb sin qb: (9)

Since the volume of the vesicle will change only over

long timescales (hours) (28), we assume it is constant in our

experiment (minutes), leading to a volume constraint on our

system

4p

3

�
R3

b þ NR3
cð1� cos qcÞ2ð2 þ cos qcÞ

� NR3
bð1� cos qbÞ2ð2 þ cos qbÞ

�
¼ V0; ð10Þ
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FIGURE 4 Energies of the sphere-with-domains system

for 10 (a), 25 (b), and 50 (c) domains as a function of the

radius Rb of the background sphere in micrometers. In

each case, the geometrical (Eq. 9) and volume constraints

(Eq. 10) are met and the total area of the domains is fixed.

The vesicle has a surface/volume ratio that is slightly larger

than that of a sphere, to create area for the domains to bud

out. For the material parameters, we use the values we ob-

tained in an earlier study on phase-separated membrane

vesicles (17). The solid line shows just the contributions

of curvature and line tension; the dashed line shows the

contributions of curvature and line tension, plus a surface

tension term; and the shaded line shows all contributions,

including a surface elasticity term (Eq. 15). Without the

surface elasticity term, the minimum of the energy is

located at the maximum vesicle radius (b and c), implying

flat domains (e, left), or the minimum vesicle radius (a),

implying full budding (e, right). In the case of 50 domains,

the line tension is not strong enough yet to create buds, but

when there are only 25 it forces the domains to bud out and

deform the membrane around, halting or at least slowing

down further fusion of domains. The energy without the

surface elasticity term predicts that the buds form complete

spheres, whereas the one with the surface elasticity predicts

spherical caps, as observed. In these plots, the excess area

fraction RA�RV

RV
¼ ð A

4p
Þ

1
2ð3V

4p
Þ�

1
3 � 1 is equal to 0.012. Panel

d shows the coordinate system for the spherical caps model

and panel e the two extremal situations—complete budding

(right) and no budding at all (left).
where V0 is the volume of the vesicle. Finally we consider

the area of the vesicle. We have to treat the (total) area of

the domains and that of the bulk phase separately. If we fix

both of them, we obtain two additional constraints:

2pNR2
cð1� cos qcÞ ¼ Ac;0; (11)

and

2pR2
bð2� Nð1� cos qbÞÞ ¼ Ab;0: (12)

If all four constraints given by Eqs. 9–12 are imposed rigor-

ously, the shape of the vesicle is fixed, because there were

only four unknowns in the system. For an experimental system

at temperature T> 0, however, the total area is not conserved.

Thermal fluctuations cause undulations in the membrane,

resulting in a larger area than the projected area given by

Ac, 0 and Ab, 0 (29). For T > 0 we should therefore not work

in a fixed-area ensemble, but rather in a fixed surface-tension

ensemble. We drop the constraints given by Eqs. 11 and 12

and instead add an area energy term to the total energy

Earea ¼ 2pso NR2
cð1� cos qcÞ

þ 2psdR2
bð2� Nð1� cos qbÞÞ;

(13)

with so and sd the surface tensions of the Lo and Ld phases,

respectively. Note that Eq. 13 can be interpreted in two ways:

in the fixed area ensemble, it contains two freely adjustable

Lagrange-multipliers (so and sd), which enforce the conditions
given by Eqs. 11 and 12. In the fixed surface tension ensemble,

so and sd are set and the shape is found by minimizing the total

energy with respect to the free parameters, considering the re-

maining geometrical and volume constraints given by Eqs. 9

and 10. These constraints can, of course, be included in the

total energy using Lagrange multipliers as well. This is often

done for the volume constraint, and the associated Lagrange

multiplier is usually identified as the pressure difference across

the membrane. We stress that since we fix the total volume (i.e.,

work in a fixed volume ensemble), this pressure is selected by

the system and is not an input parameter. The Lagrange-multi-

plier approach is mathematically equivalent to imposing an

external volume constraint as we do here for practical

purposes.

Equation 13 correctly gives the free energy contribution of

the area energy in what is called the entropic regime, where

the dominant contribution to the area term is due to the thermal

fluctuations of the membrane (29). To account for the fact that

the membrane itself can be stretched or compressed away

from its natural area, A0, we include a quadratic term in the

area of the membrane (30):

Eelastic ¼ g

�
A� A0

A0

�2

: (14)

The elastic modulus g is ~10�14 J in the tricomponent

system considered here (28). One way to understand

Eq. 14 is that in the high-tension or elastic regime, the
Biophysical Journal 96(12) 4906–4915
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surface tension is no longer a fixed number, but itself

depends linearly on the area (29). The total shape energy is

given by the sum of the five contributions (Eqs. 6–8, 13,

and 14)

E ¼ Ecurvature þ EGauss þ Etension þ Earea þ Eelastic: (15)

With the constraints from Eqs. 9 and 10, we are left with two

independent variables for the minimization of the total

energy. Since the surface tension and elastic modulus of

the Lo phase are much larger than that of the Ld phase

(17,28), we further assume that the area of the Lo domains

is fixed. This leaves us with a single variable minimization

problem, which we solve numerically. For the material

parameters, we use the values we obtained in an earlier study

on phase-separated membrane vesicles (17). The results are

shown in Fig. 4. In the same figure we plot the energy

without the membrane-stretching term (Eq. 14). In this

case we find no partial budding, showing that the area elas-

ticity term is required to reproduce the experimental results,

and that our experimental vesicles are well within the elastic

regime. Plotting the minima of the energy as a function of the

number of budded domains on the vesicle, we find that it

decreases with the number of domains (Fig. S2). Therefore

the fully phase-separated vesicle is the ground state, as we

expected from the fact that the line tension is strong enough

to dominate the shape.

MEASURING THE INTERACTIONS

Domain position tracking

To determine quantitatively the interaction strength between

the domains, we tracked their positions over time. In partic-

ular, we regarded situations like the one shown in Fig. 5, in

FIGURE 5 Typical example of the mean-square displacement (msd) of

the distance between central domain and center-of-mass of the surrounding

domains (dots); (solid line) fit to the Ornstein-Uhlenbeck model (Eq. 16);

and (dashed line) linear fit to the first three data points. (Inset) Example

for tracking configuration. (Open dots) Centroids of domains; (solid dot)

center-of-mass of domains constituting the shell; and (shaded line) vector

connecting the centroid of the central domain and the center-of-mass of

the shell domains. The msd of this distance is used to determine the diffu-

sional behavior of the central domain. Scale bar, 20 mm.
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which a single domain is surrounded and held in place by

a shell of 4–6 neighbor domains. We recorded the distance

between the central domain and the center-of-mass of the

shell domains (projected on the vesicle surface) over time

and calculated the mean-squared displacement (msd); see

Fig. 5 for a typical example. Using only relative distances

eliminates any influence of putative flow or overall move-

ment of domains.

Although the precise form of the potential that confines

the central domain is not known, we can approximate it

around the local minimum by a harmonic potential

UðxÞ ¼ 1
2

kx2 with spring constant k. If we treat the domain

as a random walker with diffusion constant D, our model

is formally equivalent to an Ornstein-Uhlenbeck process

(31). Alternatively, one can imagine all domains connected

by harmonic springs. This approach also leads to an isotropic

harmonic confining potential for the central domain. The

msd of the domain is given by

�
Dx2ðDtÞ

�
¼ 4kBT

k

	
1� exp

�
� kD

kBT
Dt

�


z4DDt for small Dt:

(16)

In practice, we determined the diffusion coefficient D (and

a small offset due to the finite positional accuracy) from a

linear fit to the first three time lags (see Fig. 5), since the reli-

ability of the data points is highest in that region. Fig. S4

shows the diffusion coefficient as a function of the size of

the central domain. The other parameter of the Ornstein-

Uhlenbeck model for the msd of a domain (Eq. 16) is the

spring constant k. We determined its value from a fit of Eq.

16 to the full experimental data set, where D was fixed to

the value determined before. Fig. 6 shows k normalized

by the number of nearest neighbors as a function of the size

of the central domain. On average, k ¼ 1.4 5 0.5 kBT/mm2.

This value supports the observation that domains are stable

over extended periods of time: since the distance between

FIGURE 6 Spring constant k corrected for the number of nearest neigh-

bors versus domain radius (open circles); the solid squares correspond to

binned data. The shaded line marks the average k ¼ 1.4 5 0.5 kBT/mm2.

Reported error bars are standard errors of the mean.
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domains is typically several mm, the energy barrier that the

domains have to overcome in order to fuse is well above

kBT. Due to the limited amount of available trajectories, the

error in the determination of k is fairly large. Hence, it is not

possible to deduce the quantitative dependence of k on the

domain size. Therefore, we determined k more precisely in

a separate, independent way, based on domain distance

statistics.

Domain distance statistics

The interaction potential between two domains can be

directly inferred from the distribution of domain distances,

as already demonstrated by Rozovsky et al. (13). We

consider a central domain surrounded by N nearest neigh-

bors, whose combined imposed potential is given by U.

Then the probability p(x) to find the central domain a distance

x from the center-of-mass of the neighbors is proportional to

the Boltzmann factor pðxÞfexp
�
� UðxÞ

kBT

�
. As before, we

assume the imposed potential, at least locally, to be

harmonic, UðxÞ ¼ 1
2

kx2, which gives for p(x)

�lnðpðxÞÞ ¼ const: þ 1

2
kx2: (17)

To determine k, we used Eq. 17 to fit �lnðpðxÞÞ, where

p(x) was determined from the distances of the four nearest

neighbors of each domain. When determining p(x), the

data was binned according to the size of the central domain.

Fig. S5 shows an example of the distance distribution and

a fit of the potential to �lnðpðxÞÞ.
The available data set for domain distances is much larger

than the one we obtained from domain tracking. Conse-

quently, the spring constant k can be determined with a smaller

error (see Fig. 7). The average k ¼ 1.6 5 0.2 kBT/mm2 coin-

cides with the result found from domain tracking k ¼ 1.4 5

0.5 kBT/mm2. Interestingly, k shows a nonlinear behavior

with a clear maximum for domains of an intermediate size

which roughly coincides with the size of the most abundant

domains (see Fig. 2).

Due to the fact that the membrane of a GUV is both curved

and finite in size, the calculation of the interaction potential

between two distortions on such a membrane is a very diffi-

cult task. However, in the case where we are dealing with

a large number of small domains on a big vesicle, the situa-

tion approaches that of domains on an infinite and asymptot-

ically flat membrane. For two such domains with the shape

of spherical caps, the interaction potential was first calculated

by Goulian et al. (6) and reads

V ¼ 4pk

a2

1 þ a2
2

��a

r

�4

; (18)

where r is the center-to-center distance between the two

domains, a is a cutoff lengthscale taken to be the membrane

thickness (a few nanometers), a1 and a2 are the domain’s

contact angles with the surrounding membrane (see Fig. 4 d),
and k is the bending modulus of the background membrane.

The domains themselves are again assumed to be nonde-

formable spherical caps, which is a good approximation

given that the ratio of their bending modulus with that of

the surrounding membrane is significantly larger than 1

(ko

kd
z4) (17).

As Dommersnes and Fournier showed (7), the interaction

between multiple inclusions is not equal to the sum of their

pairwise interactions. However, the scaling of the interaction

with the distance between the domains r and the contact

angles ai does not change; only the prefactor does. For any

budded domain surrounded by several other budded

domains, we can therefore assume a potential of the form

V ¼ Cka4
XN

i¼ 1

a2
0 þ a2

i

r4
0i

; (19)

where C is an (unknown) numerical constant; a0 is the

contact angle of the domain in which we are interested; ai

is that of the ith neighbor; and r0i is the distance between

the central domain and its ith neighbor. The number of neigh-

bors is N, which in experimental vesicles is typically 5 or 6,

corresponding to a relatively dense packing of domains. Let

us assume for simplicity that the equilibrium of the potential

(Eq. 19) is such that the nearest neighbors form a circle of

radius r0 around it, on which they are, on average, equally

distributed. This mean-field assumption means that the

central domain sees its environment as isotropic (it is not

pushed in any particular direction) and its potential has

a unique global minimum at the center of the circle. The

energy of any displacement Dr of the central domain away

from its energy minimum can then be calculated by an

expansion in Dr of Eq. 19. The linear term in that expansion

vanishes because of the isotropic distribution of the neigh-

bors, in agreement with the assumption of the existence of

a global potential minimum at Dr ¼ 0. The first term of

interest is therefore the quadratic term, which is given by

Vquadratic ¼
Cka4

2

a2
0 þ b2

r6
0

ðDrÞ2; (20)

where C is another constant and b is the contact angle of

a neighboring domain that would correspond to the time-

average isotropic potential assumed above. Equation 20

allows us to experimentally determine the strength of the

interactions between budded domains, since it yields an

effective spring constant that can be measured

k ¼ Cka4 a2
0 þ b2

r6
0

: (21)

To be able to predict the behavior of the spring constant k as

a function of the domain size d (the length of its projected

radius), we need to establish how a and r0 vary with d. At

present we have no way of determining a(d) from first prin-

ciples, since that would require having a full description of
Biophysical Journal 96(12) 4906–4915
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the complete vesicle membrane. We can argue, though, that at

least it should be an increasing function of d for small

domains. When a domain has just grown large enough to

bud out, its circumference will still be small, and the amount

of membrane bending and stretching it can induce to reduce

the line tension term will also be small. As the domain grows

in size, this balance shifts, and by budding-out further it makes

its presence felt more strongly in the surrounding membrane.

Because in our experimental system we always consider

vesicles with many small domains, we assume a(d) to be in

the linear regime. We therefore phenomenologically write

a f (d – d0), where d0 is the domain size at which budding

first occurs, which should be of the order of the invagination

length (0.5–1.0 mm; see Domain Budding).

For r0(d), we do not need to make a guess, but can simply

rely on experimental results, which show that r0 depends

linearly on d (Fig. S6). Finally, we will assume that a0 ~ b,

since in experiments we always find that domains are

typically surrounded by domains of approximately equal

size (T. Idema, S. Semrau, C. Storm, and T. Schmidt, unpub-

lished). Using the linear dependencies of a0 and r0 on d in

the expression for the spring constant (Eq. 21), we find

k ¼ A
ðd � d0Þ2

ðr0 þ cdÞ6
: (22)

Equation 22 has two fitting parameters (A and d0). The best fit

of the experimental data is given by the dark-shaded line in

Fig. 7. We find A ¼ 1.5 � 105 kBT mm2 and d0 ¼ 0.55 mm,

which indeed is approximately the size of the invagination

length (0.7 mm). Qualitatively, we find that due to the increase

in repulsion strength with growing domain size, the spring

constant increases with domain size for small domains. For

very large domains, on the other hand, the interdomain

distance also grows, and because the interactions fall off

very steeply with distance, the spring constant decreases. In

between, we find a maximum that corresponds to the most

abundantly present domain size in the experimental vesicles.

FIGURE 7 Effective spring constant k versus domain radius (solid

squares). The light-shaded line marks the average k ¼ 1.6 5 0.2 kBT/mm2

and the dark-shaded line the theoretical fit (determined using Eq. 22).
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CONCLUSION

We have experimentally demonstrated the presence of

membrane-mediated interactions in lipid bilayer membranes

and quantified their strength. We have shown that these inter-

actions originate in locally imposed curvature from the

domains on their immediate environment. We have also

shown that the phenomenon of partial domain budding can

be explained as a competition between curvature and elastic

forces, on the one hand, and tensile forces, on the other hand.

Furthermore we found that the membrane-mediated interac-

tion influences the fusion behavior of domains, resulting in

a preferred domain size. Using a simple Monte Carlo simu-

lation, we were able to reproduce the experimental domain

size distribution. Finally we found that the dependence of

the interaction strength on distance is consistent with exist-

ing theory, which gives a 1/r4 dependence.

Proteins in the membranes of living cells distort their

surrounding membrane in the same fashion as lipid domains

do. We therefore predict that similar membrane-mediated

interaction forces play a significant role in membrane struc-

turing. Coarse-grained simulations show that membrane-

mediated interactions can lead to the aggregation of membrane

inclusions (9). In our experiments we do not observe such

attractive behavior, which suggests that our model system is

more comparable to larger structures, like protein aggregates.

We expect that such aggregates experience repulsive interac-

tion if they impose a curvature on the membrane. If this curva-

ture exceeds a certain critical size, the aggregates will not be

able to grow further, just like the domains stop growing after

reaching a certain size. Moreover, the membrane-mediated

interaction reported here has a longer range (1/r4) than van

der Waals interactions (1/r6) and should therefore be the domi-

nant interaction effect in the absence of electrical charges. We

therefore expect this interaction to play an important role in

many biological processes.

SUPPORTING MATERIAL

Six figures and one movie are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(09)00780-2.
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